Somaliland National Examination & Certification Board



# Mathematics

**Workbook with Keys** 

**For Primary Students** 





Second Edition

## **CHAPTER 1: NUMBERS**

| 1.1. Multiple choice question | 1.1. | Multiple | choice | question |
|-------------------------------|------|----------|--------|----------|
|-------------------------------|------|----------|--------|----------|

- 1. The HCF of 32 and 48 is:
  - A. 4
  - B. 12
  - C. 8
  - D. 16

(SLNECB, 2006,2015)

- 2. The LCM of 21 and 84 is:
  - A. 21
  - B.) 84
  - C. 168
  - D. 56
- 3. The HCF of 98 and 84 is:
  - A. 12
  - B. 21
  - C. 14
  - D. 42

(SLNECB, 2007)

(SLNECB, 2006)

- 4. The LCM 3, 5, 6, and 10 is:
  - A. 15
  - B. 10
  - (C) 30

D. 20

(SLNECB, 2007)

- 5. 14 is the square root of:
  - A. 164
  - **B.** 169
  - C) 196
    - D. 176

(SLNECB, 2009,2015)

6. Find the next two terms in the sequence shown below.

1, 3, 7, 15, 31, 63

A. 53, 117

(B.) 63, 127

C. 73, 137

D. 83, 147

(SLNECB, 2009)

|                                                                     |                          |              | 63         |
|---------------------------------------------------------------------|--------------------------|--------------|------------|
| 7. What is the least common A. 3 B. 18 C. 27 D. 54                  | n multiple of 3, 6 and 2 |              | 67         |
| R Find the next three terms                                         | o in the single of       | (SLNECB, 20  | 10)        |
| 3. Find the next three terms                                        | s in the given pattern:  | 3, 15, 75,,, |            |
| <b>A.</b> 375, 1800, 9375 <b>B.</b> 325, 850, 3700                  | t e e                    | 0,0000 500   | 0.000 0000 |
| <b>C.</b> 375, 1875, 9375 <b>D.</b> 375, 1800, 3700                 |                          | () (3)       | DO 616     |
|                                                                     |                          | (SLNECB, 20° | 10)        |
| C. (20) <sub>10</sub>                                               |                          | (SLNECB, 20  | 0,0000     |
| 0. When these numbers ar                                            | e added 60 + 800 + 20    |              |            |
| answer:                                                             |                          | 20,          | 1          |
| <b>A.</b> 290,860                                                   |                          |              | 1          |
| <b>B.</b> 928,600 <b>©.</b> 920,860 <b>D.</b> 298,060               |                          |              | 16 P       |
|                                                                     |                          | (SLNECB, 20  | 13)        |
| 1. Which of the following nu<br>A. 506<br>B 759<br>C. 236<br>D. 473 | imbers is not divisible  |              | 3          |
| <b>2.</b> The product of $\sqrt{81}$ and                            | $\sqrt{3}$ cis:          |              | ,00        |
| A. 4                                                                |                          |              |            |
| <b>B.</b> 52                                                        |                          |              |            |
| C. 44                                                               |                          |              |            |
| <b>D</b> . 54                                                       |                          | (SLNECB, 20  | 13)        |
| 3. Changing (232)₅ to base                                          | 10 equals:               | (GLIVEOB, 20 | 10)        |
| A. 94                                                               | -3VC+2X5                 |              |            |
| B. 67                                                               | 73×573×1                 |              |            |
| C. 75                                                               | + 15 +2                  |              |            |
| D. 86                                                               | 11372                    | (SLNECB, 20° | 12)        |
|                                                                     | 101                      | ISLNEUS ZU   | 101        |

8x2=16 8x6=48 8x3=24 8x8=64 8x8=64 9x5=40 8x7=92

# Somaliland National Examination and Certificate Board

| 14. Which of these is divisible by 8?                          |                                         |
|----------------------------------------------------------------|-----------------------------------------|
| A. 434                                                         |                                         |
| B. 672 8672 8673                                               |                                         |
| C. 785 01939 269 + 542                                         |                                         |
| D. 100                                                         | (OL NEOD 2014)                          |
| 33 6                                                           | (SLNECB, 2014)                          |
| 15. The lowest common multiple of 40, 32 and 16 is:            |                                         |
| <b>A.</b> 80                                                   |                                         |
| <b>B</b> , 160                                                 |                                         |
| C. 320                                                         |                                         |
| <b>D.</b> 180                                                  | (OL NEOD 2014)                          |
| 1 12                                                           | (SLNECB, 2014)                          |
| <b>16.</b> The difference of $\sqrt{169}$ and $\sqrt{144}$ is: |                                         |
| A. 25                                                          |                                         |
| <b>B.</b> 3                                                    |                                         |
| <b>C.</b> 15                                                   |                                         |
| (D.)1                                                          |                                         |
|                                                                | (SLNECB, 2014)                          |
| 17.4735 when changed to base 10 is:                            |                                         |
| A. 241 4x5+3x5                                                 |                                         |
| B. 183 4x25+7x5+3x1                                            |                                         |
| C. 138 (50+35+3                                                |                                         |
| D. 97                                                          |                                         |
| 2.30                                                           | (SLNECB, 2014)                          |
| 18. When these numbers are added 60+800+20,000+900,000         | 000 we get this                         |
| answer:                                                        |                                         |
| <b>A.</b> 290860                                               |                                         |
| <b>B.</b> 928,600                                              |                                         |
| <b>C.</b> ) 920,860                                            |                                         |
| <b>D</b> . 298,060                                             |                                         |
|                                                                | (SLNECB, 2015)                          |
| 19. Which of the following numbers is not divisible by 11?     | to A see a district                     |
| A. 506                                                         |                                         |
| (B) 759 11236                                                  |                                         |
| C. 236                                                         |                                         |
| D. 473                                                         |                                         |
|                                                                | (SLNECB, 2015)                          |
| <b>20.</b> The product of $\sqrt{81}$ and $\sqrt{36}$ is:      | , , , , , , , , , , , , , , , , , , , , |
|                                                                |                                         |
| A. 45 9 x 6 = 54<br>B. 52                                      |                                         |
| C. 44                                                          |                                         |
| D 54                                                           |                                         |
| U 34                                                           |                                         |
|                                                                | (SI NECR 2015)                          |



|                                                          | 22                                   | Grade Eight Math | s Examinations |
|----------------------------------------------------------|--------------------------------------|------------------|----------------|
| 21. Which of the fo                                      | ollowing numbers is no               | t a square:      |                |
| A. 36                                                    | 6 10 1                               | t a square.      |                |
| B. 96                                                    | a xil                                |                  |                |
| C. 225                                                   | × 20 × X                             |                  |                |
| D. 121                                                   | 0 1/1                                |                  |                |
|                                                          | 7.0                                  |                  | (C) NECE 2016  |
| 22. 58 <sub>10</sub> when ch                             | anged to base five bed               |                  | (SLNECB, 2016  |
| A. 3145                                                  | I Dase live bec                      | ones             |                |
| <b>B</b> . 2135                                          | 558                                  | - 210            |                |
| C. 1325                                                  | 154 5416                             | = 210            |                |
| D. 2315                                                  | 08                                   |                  |                |
|                                                          | 85                                   |                  | (CL NECE 2046) |
| 23. The next numb                                        | per to the sequence                  | 1E 00 00 00      | (SLNECB, 2016) |
| A. 53                                                    | or to the sequence                   | 15, 22, 29, 36,  | IS:            |
| <b>B</b> . 39                                            |                                      |                  |                |
| C. 43 .                                                  |                                      |                  |                |
| D. 49                                                    |                                      |                  |                |
|                                                          |                                      |                  | (SUNECE 2046)  |
|                                                          | 225                                  |                  | (SLNECB, 2016) |
| 24. Find the square                                      | e root of $\frac{225}{576}$ in order | to get:          |                |
| 25                                                       | 370                                  |                  |                |
| A. $\frac{2}{26}$                                        | 10                                   |                  |                |
| 25                                                       | 10                                   |                  |                |
| B. $\frac{23}{24}$                                       | 29                                   |                  |                |
| A. $\frac{25}{26}$ B. $\frac{25}{24}$ C. $\frac{15}{16}$ |                                      |                  |                |
| C. $\frac{15}{16}$                                       |                                      |                  |                |
| A 15                                                     |                                      |                  |                |
| $\frac{15}{24}$                                          |                                      |                  | ,              |
|                                                          | 5                                    |                  | (OL NEOD 2012) |
|                                                          |                                      |                  | (SLNECB, 2016) |
| <b>25.</b> Quotient <sup>3</sup> √125                    | ÷ √25 is:                            |                  |                |
| A. 3                                                     |                                      |                  |                |
| <b>B</b> . 5                                             |                                      |                  |                |
| C. $\frac{5}{3}$                                         |                                      |                  |                |
| D 1                                                      |                                      |                  |                |
| <b>G</b>                                                 |                                      |                  | (SLNECB, 2017) |
| 26. Which of the be                                      | elow numbers not prime               | e:               | 7,20,70        |
| (A) 21                                                   |                                      |                  |                |
| B. 19                                                    |                                      |                  |                |
| C. 37                                                    |                                      |                  |                |
| D. 41                                                    |                                      |                  |                |
|                                                          |                                      |                  |                |

150

- 27. Change (32)5 to base ten
  - A. 12
  - B. 14
  - C. 16
  - D.)17

(SLNECB, 2018)

28. (221)<sub>5</sub> + (312)<sub>5</sub> is:

- A) (533)<sub>5</sub>
- B. (1033)<sub>5</sub>
- $C. (133)_5$
- **D.**  $(331)_5$

(SLNECB, 2018)

#### 1.2. Structured questions

1.

a) Write down the prime numbers which are greater than 10 and less than 20.

11,13,15,17,19

b) Write down 128 as a product of its prime factors.

2 1128 2 64 128=2×2×2×2×2×2×2×2 2 32 128=27 (SLNECB, 2006)

2. a) Convert (29)10 to base 5

\$ \frac{1}{25} \frac{5}{5} - (164)\_5

b) Convert (143)5 to base 10.

1x5+4x5+3x5 1x25+4x5+3x1 25+20+3 =(48)

(SLNECB, 2006)

OSLNECB

## **CHAPTER 2: OPERATIONS ON WHOLE NUMBERS**

# 2.1. Multiple choice questions

- 1. The solution of  $(6 \times 105 + 3 + 4)$  is:

  - B. 201
  - C. 214

(SLNECB, 2008)

- **2.** The value of  $\frac{0.23+0.8}{0.4\div0.2}$  is:
  - A. 0.515
  - **B.** 0.63
  - C. 10.23
  - D. 12.875
- (SLNECB, 2009) 3. Simplify the expression: (-4)(3)(-1)(-2).
  - A. 4
  - B. -4
  - C. 24
  - D. -24

(SLNECB, 2010)

- **4.** Find the value of the expression:  $3^3+4\times(8+4)\div2$ .
  - (A.) 51
  - **B**. 93
  - C. 105
  - D. 40

(SLNECB, 2010)

- **5.** Simplifying  $(25+4\times6)\div7$ , the answer is:

  - **B**. 13

(SLNECB, 2013)

- 6. What is the value of  $\frac{0.48 \times 0.305}{0.006}$ 

  - **B.** 13.8
  - C. 28.4
  - D. 24.4

(SLNECB, 2016)

3.5

5-1 5-5

5-1

Somaliland National Examination and Certificate Board

Certificate of Primary Education
Grade Eight Maths Examinations

## 2.2. Structured questions

| 1. Simplify: $(2.5 + 3) - 3.4 \times 3 + 5.1$ . | BODMAS        |
|-------------------------------------------------|---------------|
| THE WARRIES STATE                               |               |
|                                                 |               |
|                                                 |               |
|                                                 |               |
|                                                 |               |
|                                                 | (SLNECB 2013) |

## **CHAPTER 3: RATIO AND PROPORTION**

# 3.1. Multiple choice questions

- 1. Dividing \$150 between Ali iyo Asha in the ratio 2: 3 respectively equals:
  - A. \$60 and \$90
  - B. \$70 and \$80
  - C. \$100 and \$50
  - D. \$90 and \$60

(SLNECB, 2012)

- **2.** Given 5 : 3 = x : 6, the value of x is:
  - A. 30
  - **B.** 10
  - C. 5
  - D.  $\frac{18}{5}$

8 x5.40

(SLNECB, 2013)

- 3. If Ali and Osman collected an amount of \$480 in the ratio 3 : 2 respectively. What is Ali's money?
  - A. \$288
  - **B.** \$240
  - C. \$720
  - D. \$320

(SLNECB, 2013)

**4.** The ratio of the heights of Ali and Nour is  $\frac{6}{7}$ . If the height of Nour is

175 cm, what is Ali's height?

- A. 175 cm
- B. 185 cm
- C. 90 cm
- D. 150 cm

(SLNECB, 2014)

- 5. The circumference and diameter of a circle has 3:1 as the ratio of their lengths. Find the circumference of the circle whose diameter in 4.5 cm.

  - B. 9.5
  - C. 13.5
  - D. 11.5
- 6. Divide 672 shillings among Ali, Omer and Awil in the ratio 7:5:9. Then Ali (SLNECB, 2016)
  - A. 288 sh.
  - B. 264 sh.
  - C. 260 sh
  - D. 224 sh

- (SLNECB, 2016)
- 7. 5 men built two rooms in 9 days. How many days will it take the same two rooms to be built by 3 men?
  - A. 12 days.
  - **B.** 27 days
  - C. 45 days.
  - D. 15 days

- (SLNECB, 2016)
- 8. Divide sh 615 between Ahmed, Ali and Omer in the ratio 3:5:7 respectively, Ali will get ::
  - A. 123
  - B. 205
  - C. 287
  - D. 124

(SLNECB, 2018)

- 9. The value of the variable in the ratio  $\frac{2}{5} = \frac{6}{n}$  is:
  - A. 2
  - B. 6
  - 15
  - **D**. 30

2n = 5x6

(SLNECB, 2018)

- 10. The sum of the ratio 4:3:2 is:
  - A. 800
  - B. 900
  - C) 9
  - D. 7

(SLNECB, 2018)

#### 3.2. Structured questions

1. The ratio of the heights of Ali and Asha is 7:6. If the height of Ali is 175 cm, what is the height of Asha? (SLNECB, 2008) 2. The cost of 6 books is sh 24000. What is the cost of 15 books? (SLNECB, 2008) 3. A milk factory produces 4 kg of butter from 46 litres of milk. How many litres of milk are needed to produce 200 kg of butter? 200 (SLNECB, 2008) 4. 14 cows ate a heap of grass in 30 days. How long will the cows finish the grass if 6 of them are sold? (SLNECB, 2008) 5. Farmers have 120 beasts in their garden. If the ratio of the cattle, goats and camels is: 1:2:3 find the number of: a) Cattle

|    | -     |
|----|-------|
| b) | Goats |

2 x 120

c) Camels

3 X120

(SLNECB, 2009)

6. The ratio of the height of Ali and Asha is 7:6. If the height of Ali is 175 cm, what is the height of Asha?

 $\frac{7}{6} \frac{115}{X}$   $\frac{7}{4} = 6x175$   $\frac{7}{4} = 1050$   $\frac{7}{4} = \frac{7}{4}$ 

x=150cm

(SLNECB, 2015)

7. A milk factory produces 4kg of butter from 46 liters of milk. How many liters of milk are needed to produce 200kg of butter?

200 X 4x = 200x46 4x = 9200 4 - 4 X = 23001 + res

(SLNECB, 2015)

| (SLNECB, 2017)                                                          |  |  |
|-------------------------------------------------------------------------|--|--|
| The mean of the weights of 6 boys is 28 Kg. The mean of the weight of 4 |  |  |
| of them is 26 Kg. What is the mean of the weight of the other boys?     |  |  |
|                                                                         |  |  |
|                                                                         |  |  |
|                                                                         |  |  |
|                                                                         |  |  |
|                                                                         |  |  |

# **CHAPTER 4: SCALE OF DRAWING**

# 4.1. Multiple choice questions

- 1. In scale drawing 2 : 200 stands for:
  - A. 1 cm stands for 100 cm
  - B. 2 cm stands for 100 cm
  - C. 1 cm stands for 200 cm
  - D. 2 cm stands for 50 cm

(SLNECB, 2014)

#### 4.2. Structured questions

| 1. If b | a plan of a house is drawn to a scale of 1 ecome 11 cm by 4 cm. | : 20 and its dimensions |
|---------|-----------------------------------------------------------------|-------------------------|
| a       | What is the actual length of the house?                         |                         |
|         |                                                                 | Chan William Color      |
| b)      | How wide is the house on the ground?                            |                         |
|         |                                                                 | TO THE RESERVE AND THE  |
| c)      | What is the ground area of plot of the house?                   | 7                       |
|         |                                                                 |                         |
|         |                                                                 | (SLNECB, 2008)          |

#### **CHAPTER 5: FRACTIONS, DECIMALS AND PERCENTAGES**

## 5.1. Multiple choice questions

- 1.  $3\frac{1}{3} 2\frac{1}{6}$  is:
  - **A.**  $1\frac{1}{3}$
  - **B**,  $1\frac{1}{6}$
  - **c**.  $2\frac{1}{3}$
  - **D.**  $2\frac{1}{6}$

(SLNECB, 2008)

- 2.  $\frac{4}{5}$  written as a percentage is:
  - A. 20%
  - B. 125%
  - C. 80%
  - D. 40%

(SLNECB, 2008)

- 3. 34% of 150 points is equal to:
  - A. 50
  - **B**. 51
  - C. 60
  - D. 68

(SLNECB, 2009)

 Four students are reading the same book. The table below shows the portion that each student has read.

| Student | Portion read |
|---------|--------------|
| Yassin  | 7/10         |
| Fadumo  | 2/3          |
| Hassan  | 5/8          |
| Safia   | 3/4          |

Which student has read the largest portion of the book?

- A. Yassin
- B. Fadumo
- C. Hassan
- D. Safia

(SLNECB, 2010)

- 5. In a certain class, there are 20 girls and 25 boys. What percentage are girls?
  - A. 44.4%
  - B. 34.4%
  - C. 33.4%
  - D. 23.4%
- 6. Change  $\frac{1}{16}$  into decimal.
  - A. 0.125
  - B. 0.625
  - C. 0.0625
  - D. 0.3125
- 7. 15% of180 equals:
  - A. 36
  - B. 27
  - C. 9
  - **D**. 3
- 8. Change  $\frac{3}{4}$  into percentage.
  - A. 50%
  - B. 70%
  - C. 75%
  - D. 85%
- 9. The simplification of  $3\frac{1}{2} + 4\frac{1}{3}$  is:
  - A.  $7\frac{5}{6}$
  - B.  $12\frac{1}{3}$
  - c.  $6\frac{1}{3}$
  - D.  $7\frac{1}{2}$
- 10. The percentage of 0.25 is written as:
  - A. 0.25%
  - B) 25%
  - C. 2.5%
  - D. 75%

(SLNECB, 2011)

(SLNECB, 2011)

(SLNECB, 2012)

(SLNECB, 2012)

7+13/3

(SLNECB, 2012)

(SLNECB, 2013)

Somaliland National Examination and Certificate Board

Certificate of Primary Education Grade Eight Maths Examinations

11.20% of 400 is:

A. 240

B) 80

100 x400

C. 8

D. 24

(SLNECB, 2013)

**12.** There are 15 women and 25 men working in the government hospital. The percentage of the women is:

A. 60%

B. 37.5%

C. 40%

D. 62.5%

(SLNECB, 2013)

**13.**  $(\frac{1}{2} + \frac{1}{3}) \times \frac{6}{5}$  is:

**A**.  $\frac{1}{3}$ 

**B**.  $\frac{5}{6}$ 

C. 1

**D.**  $\frac{2}{3}$ 

(SLNECB, 2014)

14. Changing 56% to decimal is:

A. 5.6

**B**. 56

(C.) 0.56

**D.** 0.056

15. 12 1/2 % of 80 days is:

A. 15 days

**B.** 10 days

C. 8 days

D. 20 days

(SLNECB, 2014)

(SLNECB, 2014)

16.34% of 150 points is equal:

A. 50

**B.** 51

C. 60

D. 68

(SLNECB, 2015)

#### Somaliland National Examination and Certificate Board

#### Certificate of Primary Education Grade Eight Maths Examinations

- 17. Change  $\frac{1}{16}$  into decimal:
  - A. 0.125
  - B. 0.625
  - C. 0.0625
  - D. 0.3125

(SLNECB, 2015)

18. 
$$\left(\frac{1}{2} + \frac{1}{3}\right) \times \frac{6}{5}$$
 is:

- A.  $\frac{1}{3}$ B.  $\frac{5}{6}$

- D.  $\frac{2}{3}$

$$\left(\frac{1}{2} + \frac{1}{3}\right)$$
 $3 + 2 = \frac{5}{6} \times \frac{6}{5}$ 
 $3 = \frac{1}{3} \times \frac{1}{3}$ 

(SLNECB, 2015)

- 19. 12 1/2% of 80 days is:
  - A. 15 days
  - B. 10 days
  - C. 8 days
  - **D.** 20 days

(SLNECB, 2015)

- 20. 20% of 400 is:
  - A. 240
  - **B.** 80
  - C. 8
  - D. 24

(SLNECB, 2015)

- 21. 35% of water dripped from a tank throughout the night. Only 940 liters remained. How many liters of water did the tank drip out?
  - A. 506
  - **B.** 453
  - C. 307
  - D. 293

(SLNECB, 2016)

#### Somaliland National Examination and Certificate Board

Certificate of Primary Education Grade Eight Maths Examinations

**22.** Evaluate :  $4\frac{3}{8} \div (1\frac{5}{8} - \frac{3}{4})$ 

in order to obtain:

- **A.**  $\frac{1}{5}$

(SLNECB, 2016)

23. 0.875 is equivalent to:

- A.
- B.  $\frac{6}{5}$ C.  $\frac{7}{8}$ D.  $\frac{5}{6}$

(SLNECB, 2016)

- **24.**  $1\frac{2}{3}$  + (4X2) ÷  $\frac{1}{2}$  4 is:

25. 12.5% of 80 hours is:

(SLNECB, 2017)

- A. 15 hours
- B. 10 hours
- C. 8 hours
- D. 20 hours

(SLNECB, 2017)

Somaliland National Examination and Certificate Board

Certificate of Primary Education Grade Eight Maths Examinations

26. 0.003 is equivalent to:

A. 
$$\frac{3}{100}$$
B.  $\frac{3}{100}$ 

- c.  $\frac{3}{10}$
- D. 0.03

27. 40% of 1250 is:

- A. 500
- B. 400
- C. 125
- D. 300

(SLNECB, 2018)

(SLNECB, 2018)

#### 5.2. Structured questions

**OSLNECB** 

|                                            | nts:                                                                                  |     |
|--------------------------------------------|---------------------------------------------------------------------------------------|-----|
| a) Failed                                  |                                                                                       |     |
|                                            |                                                                                       |     |
|                                            |                                                                                       |     |
| b) Passed                                  |                                                                                       |     |
|                                            |                                                                                       |     |
|                                            | 970 310                                                                               |     |
|                                            | (SLNECB, 2                                                                            |     |
|                                            | students failed in the examination. The number of the failed                          | t   |
| students wa                                |                                                                                       |     |
| a) How mai                                 | y students passed?                                                                    |     |
|                                            |                                                                                       |     |
|                                            |                                                                                       |     |
|                                            |                                                                                       |     |
| ) What was                                 | the total number of students?                                                         |     |
|                                            |                                                                                       |     |
|                                            |                                                                                       |     |
| The second second second                   |                                                                                       |     |
|                                            |                                                                                       |     |
|                                            |                                                                                       |     |
|                                            |                                                                                       |     |
|                                            | /QL NECOS CO                                                                          |     |
| Simplify 3                                 | 1,11,23 (SLNECB, 20                                                                   | 007 |
| Simplify: 3                                | $\frac{1}{2} + 1\frac{1}{3} - 2\frac{3}{5}$ (SLNECB, 20)                              | 007 |
| Simplify: 3                                | $\frac{1}{2} + 1\frac{1}{3} - 2\frac{3}{5}$ $1\frac{1}{3} - 2\frac{3}{2}$             |     |
| Simplify: $3\frac{1}{2}$                   | $\frac{1}{2} + 1\frac{1}{3} - 2\frac{3}{5}$ $\frac{1}{3} - 2\frac{3}{5}$ (SLNECB, 20) |     |
| Simplify: $3\frac{1}{2}$                   | $\frac{1}{2} + 1\frac{1}{3} - 2\frac{3}{5}$ $1\frac{1}{3} - 2\frac{3}{2}$             |     |
| Simplify: $3$ $3\frac{1}{2}$ $\frac{3}{2}$ | $\frac{1}{2} + 1\frac{1}{3} - 2\frac{3}{5}$ $1\frac{1}{3} - 2\frac{3}{2}$             |     |
| Simplify: 3                                | $\frac{1}{2} + 1\frac{1}{3} - 2\frac{3}{5}$ $1\frac{1}{3} - 2\frac{3}{2}$             |     |
| Simplify: 3                                | $\frac{1}{2} + 1\frac{1}{3} - 2\frac{3}{5}$ $1\frac{1}{3} - 2\frac{3}{2}$             |     |

|    | D) | Convert10.250 to a fraction.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4. | As | (SLNECB, 2007) tha received the following marks in a test.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|    |    | inglish = $\frac{4}{5}$ , Mathematics = $\frac{2}{25}$ , Social studies = $\frac{13}{45}$ , Science = $\frac{17}{20}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|    |    | which subject did she do best? Show your working.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|    |    | January Commission of the Comm |
|    |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    |    | (SLNECB, 2008)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 5. | W  | ork out: $21 \div 2\frac{1}{3}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|    | _  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    | -  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    |    | (SLNECB, 2010)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 6. |    | ank contains 80,000 litres of water. When some water is used, there is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|    |    | ,000 litres remaining in the tank.  How many litres of water is used?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|    | ۵, | Trow many nace of water to accu.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|    |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    |    | What is the percentage of the water used from the tank?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|    |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

|    | b) What is the percentage of the water remaining in the tank?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    | (SLNECB, 2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 7. | The number of the pupils of school were increased from 1000 to 1200.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|    | Find the Percentage increase?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    | (SLNECB, 2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 8. | Simplify $\frac{3}{4} - \frac{1}{3} \times \frac{5}{3} \div \frac{2}{3} + \frac{1}{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    | (SLNECB, 2017)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 9. | Simplify $\frac{2}{3} - \frac{1}{4} \times \frac{8}{5} + \frac{1}{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -  | The state of the s |
|    | (SLNECB, 2018)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

#### **CHAPTER 6: SETS**

# 6.1. Multiple choice questions

1.  $A = \{10, 11, 12, 13\}$  and  $B = \{12, 14, 15\}$  then  $A \cap B$  is equal to:

12

- A. {11, 12}
- (B) {12}
  - C. {11, 13}
  - D. {12, 14, 15}

(SLNECB, 2006)

- 2.  $A = \{x:x \text{ is an even number}\} B = \{x:x \text{ is a prime}\}, A \cap B \text{ is equal to:}$ 
  - A. {-2, 2}
  - **B**. {2}
  - C. {2, 4, 6, ...}
  - D. {}

(SLNECB, 2007)

- 3. If  $A = \{1, 2, 3, 4\}$  and  $B = \{3, 4, 5, 6, 7\}$  the intersection of A and B is:
  - A. {2, 3}
  - (B. {3, 4}
  - C. {4, 5}
  - D. {3, 6}

(SLNECB, 2012)

- 4. If  $A = \{1, 3, 5, 7, 8\}$ ,  $B = \{1, 2, 5, 8, 9, 10\}$  the intersection A and B is:
  - A.){1, 5, 8}
  - B. {1, 2, 8}
  - C. {1, 5, 2}
  - D. {1, 2, 5}

(SLNECB, 2013)

- 5. If  $\{1, 2, m, 5\} = \{2, 4, 1, 5\}$ , the value of m is:
  - A. 1
  - **B**. 5
  - C. 4
  - D. 2

(SLNECB, 2014)

- 6. If A= { 1, 5, 6, 8, 9}. which of the solution sets are subsets of A.
  - A. {1,10}
  - **B.** {2, 5, 6}
  - C. {4, 6, 8, 9}
  - **D**. {5,6}

(SLNECB, 2018)

# 6.2. Structured questions

**1.** a)  $A = \{1, 3, 5, 7, 9, 11\}, B = \{2, 3, 5, 7, 22, 13\}$  Find:

(i) AUB

(1,2,3,5,7,9,11,13,22)

(ii) A∩B

(3,5,7)

b) Represent A∩B by a Venn diagram.



(SLNECB, 2007)

**2.** If  $A = \{2, 4, 6, 8, 10\}$ ,  $B = \{1, 3, 5, 7\}$ ,  $C = \{5, 8, 11, 12\}$  Find:

a) AUB

V= (1, 2, 3, 4, 5, 6, 7, 8, 10)

b) BOC

 $\Lambda = (5)$ 

c) AUBUC

V=(1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12)

(SLNECB, 2011)

3. Given: A = {5, 6, 7, 8, 9}, B = {7, 8, 11, 13} and C = {8, 11, 13, 15}

a) AU(BUC)

b) (ACC)UB

(SLNECB, 2014) 4. If A= {2, 4, 6, 8}

B= {1,3, 5, 7} C= \5,8, 11,12

Find: A) AUB

BIC B)

(SLNECB, 2015)

5. a) If the universal set is:

 $G = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ 

 $A = \{2, 3, 4, 5, 9\}$ 

 $B = \{3,4,5,8\}$ 

Find:

i) AUB

| ii) A (A | complemen | t) |
|----------|-----------|----|
|          | 1,6,7,    | 9) |
|          | 1 1 1     | /  |

t) What is the intersection of teh sets:



(SLNECB, 2016)

6. If

$$G = \{1, 2, 3, 4, 5, 6\}$$

$$A = \{1, 2, 3\}$$

$$B = \{1, 2, 4, 5\}$$

$$C = \{1, 2, 3, 6\}$$

Find : A) A( )C

B)  $A \cup B$ 

c) B( )C

D) BUC

E) AUC

(SLNECB, 2018)

#### **CHAPTER 7: INDICES**

#### 7.1. Multiple choice questions

- 1.  $n^2 \div n^{-3}$  is equal to:
  - A. 116
  - B. n-1
  - c.) n5
  - D. n-5
- 2. 3.12 × 10<sup>2</sup> equals:
  - A. 31.2
  - B. 3120
  - C. 31200
  - D. 312

- (SLNECB, 2006)
- (SLNECB, 2007)
- 3. If  $\log 2 = 0.3010$ ,  $\log = 0.6990$  then  $\log 20$  is equal to:
  - (A) 1.3010
  - B. 0.3010
  - C. 0.9030
  - D. 0.6020
- 0.3010
- (SLNECB, 2007)

- **4.** The simplification of  $\frac{x^2(xy)}{xy^2}$  is:
  - - $B. \frac{x^2}{v}$
    - $\mathbf{c.} \ \frac{x^3y}{xy^2}$
    - D.  $\frac{2x^2y}{xy^2}$

(SLNECB, 2007)

- 5.  $9.3 \times 10^7$  is equal to:
  - A. 9300000
  - B. 9.300000
  - C. 930000000
  - D. 93000000.

(SLNECB, 2007)

- **6.** Simplify the expression:  $10 \div 10^7$ .
  - A. 10
  - B. 100
  - $C. 10^4$
  - D. 10<sup>21</sup>

(SLNECB, 2010)

- 7. What is the value of  $3^6 \times 3^{-3}$ ?
  - A. 3
  - **B**. 9
  - C. 27
    - D. 1/3-

(SLNECB, 2011)

- 8. 0.00053 expressed in scientific notation is:
  - **A.**  $0.53 \times 10^{-3}$
  - **B.**  $53 \times 10^{-5}$
  - $(C.)5.3 \times 10^{-4}$
  - **D.**  $5.3 \times 10^4$

- (SLNECB, 2013)
- **9.** Given:  $\log 2 = 0.3010$ ,  $\log 3 = 0.4771$ , then  $\log 12$  is: **A.** 0.7781

  - (B) 1.0791



(SLNECB, 2013)

- **10.**  $(\frac{3}{5})^{-2} \times \frac{3}{10}$  is:

  - **D.**  $\frac{8}{5}$
- 11.8 =  $2^3$ , when changed into logarithm it is:

(SLNECB, 2014)

- (B.)  $\log 8 = 3$
- c. log2=8
- $D. \log 2 = 3$

# Somaliland National Examination and Certificate Board

Certificate of Primary Education Grade Eight Maths Examinations

- 12.  $n^2 \div n^{-3}$  is equal to:
  - A. 116
  - B. n-1
  - (c.) n5
  - D. n-5

(SLNECB, 2015)

- 13. 3.12 X 10 is equal to:
  - A. 31.2
  - **B.** 3120
  - C. 31200
  - D. 312
- 14. If log 2 =0.3010, then log 20 is equal to.
  - **A.** 1.3010
  - **B.** 0.3010
  - C. 0.9030
  - **D.** 0.6020

(SLNECB, 2015)

(SLNECB, 2015)

- 15. 0.00053 expressed in scientific notation is:
  - A. 0.53 X 10<sup>-3</sup>
  - B. 53 X 10<sup>-5</sup>
  - C. 5.3 X 104
  - D. 5.3 X 104

(SLNECB, 2015)

- **16.**  $\left(\frac{3}{6}\right)^{-2} X \frac{3}{10}$  is:
  - **A.**  $\frac{5}{6}$
  - **B**.  $\frac{6}{5}$
  - c.  $\frac{5}{8}$
  - **D.**  $\frac{8}{5}$

(SLNECB, 2015)

- 17. 8=23, when changed into logarithm it is:
  - A. long3=2
  - B. long8=3
  - c. long2=8
  - D. long2=3

(SLNECB, 2015)

- 18. The number 0.0000532 when written in standard notation ::
  - A. 53.2 x 10<sup>-5</sup>.
  - B. 532 x 10<sup>-5</sup>.
  - C. 5.32 x 10<sup>-5</sup>.
    - **D.**  $532 \times 10^{-5}$ .

(SLNECB, 2016)

- **19.** Simplify  $(2^3)^2 \times (2^8)$ :
  - A. 248
  - B)214 26+28=2 = 2
  - C. 314
  - D. 348

(SLNECB, 2016)

- 20. The number 1235 x 10-2 is equal:
  - A. 123.5
  - **B.** 12.35
  - C. 1.235.
  - D. 1235
- **21.** Solve  $2^{2x} = 16$  (SLNECB, 2016)
  - A. x= 4 .
    - B. x= 2
    - 2. x= -2.
    - D. x= -4
- 2x-4

(SLNECB, 2016)

- 22. Log<sub>3</sub> 9 = 2 when changed to powers will be:
  - A.  $9 = 2^3$ .
  - B) 9= 3<sup>2</sup>
    - $C. 3 = 9^2.$
    - D.  $3 = 2^9$

(SLNECB, 2016)

- 23. Change 8 = 23 to logarithm:
  - A. Log<sub>2</sub> 8= 3 .
  - B. Log<sub>8</sub> 2= 3
  - C. Log<sub>3</sub> 2= 8 .
  - D. Log<sub>3</sub> 8= 2

(SLNECB, 2016)

- 24.  $2^{x+1} = 32$ , the value of X is:
  - A. 2.
  - B. 4
  - C. 6
  - **D**, 8
- **25.**  $3^4 \div 3^5$  is:
  - **A**. 3<sup>1</sup>
  - **B**) 3<sup>-1</sup>
  - C. 39
  - **D**. 3<sup>0</sup>

100,000点

(SLNECB, 2017)

(SLNECB, 2016)

- **26.**  $\left(3\frac{1}{3}\right)^3$  is:
  - B. 333.23
  - L 333.9
  - 37.037
  - X. 333.6

10/3 = 1006

27. Write this number 0.00001030 in scientific Notation :

- A. 1.03 x10<sup>-6</sup>
- B. 1.03 x 10<sup>-4</sup>
- C. 1.03 x 10-5
- D. 10.03 x 10<sup>-5</sup>

(SLNECB, 2017)

(SLNECB, 2017)

- 28. The exponent 10 of 10,000 is
  - A. 3
  - B. 4
  - C. 10
  - D. 1

(SLNECB, 2017)

- **29.**  $9 = 3^2$ , when written in logarithmic form is:
  - **A.**  $Log_2 3 = 9$
  - **B.**  $Log_3 2 = 9$
  - C.  $Log_2 9 = 3$
  - $D. \log_3 9 = 2$

(SLNECB, 2017)

- **30.**  $Log_{15}$  225 = 2, when written In exponential form is :
  - (A.)  $225 = 15^2$
  - **B**.  $225 = 2^{15}$
  - **C.**  $225 = 15^{-2}$
  - **D**.  $225 = \sqrt{15}$

(SLNECB, 2017)

- 31.  $5^6 \div 5^4$  is :
  - **A**. 5
  - **B**. 5<sup>4</sup>
  - C) 25
  - D. 54

(SLNECB, 2018)

- 32. The number 0.000356, in scientific notation is :
  - A. 3.56 x104
  - B. 3.56 x10-4
  - C.) 3.56 x10-3
  - **D.** 3.56 x10<sup>3</sup>
- 33. (0.2)<sup>3</sup> is equal to: (SLNECB, 2018)
  - A. 0.004
  - **B.** 0.002
  - C. 0.4
  - **D.** 0.008
- **34.** In logarithm form,  $10.000 = 10^4$  is (SLNECB, 2018)
  - **A.**  $\log_{10} 10000 = 4$
  - B. log4 10.000 = 9
  - C. log4 4 = 1000
  - D. log4 10 = 100

(SLNECB, 2018)

## 7.2. Structured questions

1. Simplify the following:

a)  $(7.2 \times 10^{-1}) + (3.5 \times 10^{-2})$ 

= 0.755 = 7.55 XID

 $(2.4 \times 10^5) - (1.2 \times 10^{-3})$ 

= 2399999988 = 2399999988

-2.399999988XID

 $(7.63 \times 10^4) - (1.36 \times 10)$ 

76300-13-6 - 76286-4 = 7-62864 XII

(SLNECB, 2006)

2. If  $\log 2 = 0.3010$ ,  $\log 3 = 0.4771$  and  $\log 5 = 0.6990$ , calculate without using tables or calculators, the value of:

a) log 8

109=(2x2x2) 0.3010+0.3010+0.3010 714 = 0.9030

b) log 15

164= (5x3) 5 15 0:6990+0.4771 3 3

| c) $\log \frac{12}{5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 12-6 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4 Small the total manual and white the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| C- 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 12-12-38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 016+0.3010+0.4771=1.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 90 = 10791-0-6990=0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| The second secon | (SLNECB, 2006)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 3. If log 2 = 0.3010, log 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | s = 0.477 1 and log 5 = 0.6990, find:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| a) log 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 109 (2x2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $(2\times3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0.3010+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0-3010+0-3010+0-4771                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| = 1-380                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | dual traffic de la constantina del constantina de la constantina de la constantina del constantina de la constantina de la constantina del constantina |
| 0.3010 b) $\log \frac{8}{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (61 × 85 r) - (101 × 58 t)) = 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| - 7 -10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2/3-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0-500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.4291                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | D-4771=0.4269                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| c) log (3 × 40)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3-41-10-4154                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 3=0.4971                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | a was and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | retires solves or calculators, the value of the V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0. 5010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3 pol 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 3 23%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (SI NECE 2007)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0 497 4. a) Write in standard for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (SLNECB, 2007)<br>m 23570000.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 0.4259 2-357x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e   C1 g0 (0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Andrew Commence of the Commenc |
| <b>b)</b> Simplify: $\frac{(3x^2)(x^5)(8}{(2x^3)(4)^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | x) <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $(3r^3)(4r^2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4 - 1/20 C3x X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (8x)2 (3x2)(x5) 64V2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| (0/4 - 3X3)(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4x2) 1=x = 13x5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| - 100 g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 16 4 - OV 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 12 / 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | =16x'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (SLNECB, 2007)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| OSINECE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |



|    |     | icate Board                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Grade Eight Maths Examinations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5. | Ev  | aluate each of the following logarithm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | s designed of our ray to good to de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|    |     | $\log_{32}$ $32 = 2^5 = 109.32$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|    |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | //                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|    |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    | b)  | log8]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    |     | 81=34= 109 81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|    |     | 0 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | //                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|    |     | - 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (SLNECB, 2009)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 6. | Wr  | rite in scientific notation the following r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 회가 있다면 주고 있는데 가는데 이번 경기를 보고 있다. 그리고 있는데 그리고 있는데 그리고 있는데 그리고 있다면 그리고 있다.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|    |     | 0.0057                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    |     | 5.7x10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Control of the Contro |
|    |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | war war and the second second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|    | b)  | 36000.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    |     | 3.6x10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.12 hayak di sanangan sanan ng Pilipi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|    |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | and the first of the order                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|    |     | A Commence of the Commence of | (SLNECB, 2010)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 7. | Giv | ven: if log 2 = 0.3010, log 3 = 0.4771 a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | and log 5 = 0.6990, find:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|    | a)  | log 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    |     | 10g=(2x3x5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    |     | 0.3010+0.4771+0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.6990                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|    |     | = 1-4771                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 35 1 1 25 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|    |     | Marie Company of the | P. 16 400 Care -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|    | b)  | log 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    |     | 109=(5x3x3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|    |     | 0.6990+0.4+71-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +0-4771                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|    |     | - 1.6532                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

(SLNECB, 2011)

(SLNECB, 2013)

**10.** Simplify:  $28^4y^6 \div 7x^2y^7$ .

28xy - 4xy - 4xy

(SLNECB, 2014)

0.035

Somaliland National Examination and Certificate Board

Certificate of Primary Education Grade Eight Maths Examinations

| 11. Simplify the following:<br>a) $(7.2X10^{-1})+(3.5X10^{-2})$  |                |
|------------------------------------------------------------------|----------------|
| $0.72 + 0.035 \\ -0.755 = 7.55 \times 10^{-1}$                   | Else Services  |
| b) (24X10)-(1.2X103)<br>240000-0.0012                            | (SLNECB, 2015) |
| 12. a) Write this number in scientific notation. 0.005431        | (SLNECB, 2015) |
| b) Write this number 5.43 x 10 <sup>-5</sup> as a normal number: | Made de de     |
|                                                                  |                |
| 13. Change 60320105 in scientific notation: 6.0320105X10         | (SLNECB, 2016) |
|                                                                  | (SLNECB, 2017) |

14. Find the value of y:

3 93

a)  $3^y = 9^{y-1}$  $3^y = 9^{y-1}$ 

4-24-2

b) Evaluate these logarithms

i) Log<sub>7</sub> 49

49=72= log 49=2/

ii) Log<sub>5</sub> 625

625=54= 1096

5 625

**15.** a) what is the value of x in this equation?

 $2^{x} = 8$ 

218 2x=83 214 X=3

b) Evaluate Log<sub>4</sub> (256)

(SLNECB, 2018)

(SLNECB, 2017)

2/8/2/

## CHAPTER 8: LENGTH AND AREA

## 8,1. Multiple choice questions

- 1. The area of the square is:
  - A. 5 cm<sup>2</sup>
  - B. 10 cm<sup>2</sup>



- C. 25 cm<sup>2</sup>
- D. 10 cm

(SLNECB, 2006,2015)

2. The circumference of the circle with radius 14 cm ( $\pi = \frac{22}{7}$ ) is:

5 cm

- A. 154 cm
- B. 88 cm
- C. 1232 cm
- D. 44 cm

(SLNECB, 2007)

- The area of trapezium with the parallel sides a = 14 cm b = 34 cm and height h = 14 cm is;
  - A. 672 cm<sup>2</sup>
  - B. 306 cm<sup>2</sup>
  - C. 336 cm<sup>2</sup>
  - D. 612 cm<sup>2</sup>

-140 -140

(SLNECB, 2008)

4. The circumference of a circle whose diameter 28 cm is \_\_\_\_

(Take 
$$\pi = \frac{22}{7}$$
).

- A. 80 cm
- B. 88 cm
- C. 98 cm
- D. 108 cm

(SLNECB, 2008)

- 5. When wheel "B" turns 2 revolutions, wheel "A" turns 5 revolutions. When wheel "A" turns 40 revolutions, how many revolutions does wheel "B" turn?
  - A. 4
  - **B**. 16
  - C. 80
  - **D.** 100



(SLNECB, 2009)

- 6. Mohamed's bicycle wheel has an inside radius of 12 inches. Which expression could be used to find the inside circumference of this wheel?
  - A. 2 × 6 × π
  - B. 2 × 12 × π
  - **C.** 9 × 9 × π
  - D.  $12 \times 12 \times \pi$



(SLNECB, 2009,2015)

- 7. If the area of the square is 196 mm<sup>2</sup>. Calculate the side of the square?
  - A. 13 mm
  - **B.** 14 mm
  - C. 15 mm
  - D. 16 mm

(SLNECB, 2011)

- 8. Find the distance travelled by a tyre with radius 7 feet after 10 revolutions.
  - A. 44 f
  - B. 110 f
  - C. 220 f
  - D. 440 f



(SLNECB, 2011)

- 9. If the area of circle is 154 m², calculate its radius.
  - A. g = 21 m
  - B. g = 7 m
  - C. g = 14 m
  - **D.** q = 3.5 m

(SLNECB, 2012)

- 10. The area of the rectangle whose dimensions are 6 cm and 4cm respectively is:
  - A. 12 cm<sup>2</sup>
  - B. 24 cm<sup>2</sup>
  - C. 10 cm<sup>2</sup>
  - D. 48 cm<sup>2</sup>



(SLNECB, 2012)

- 11. The area of the figure shown below equals:
  - A. 15 mm<sup>2</sup>
  - B. 30 mm<sup>2</sup>
  - C. 45 mm<sup>2</sup>
  - D. 20 mm<sup>2</sup>



(SLNECB, 2012)

- 12. The area of a rectangle with length of 9 m and width of 8 m is
  - A. 16 m<sup>2</sup>
  - B. 64 m<sup>2</sup>
  - C. 56 m<sup>2</sup>
  - D. 72 m<sup>2</sup>

(SLNECB, 2013,2015)

- 13. The height of a right triangle with area of 60 m² and base of 10 m is:
  - A. 14 m
  - **B.** 12 m
  - C. 8 m
  - D. 6 m

(SLNECB, 2013,2015)

©SLNECB

10

4

14. The surface area of this closed cuboids' is:



- A. 280 cm<sup>2</sup>
- B. 196 cm<sup>2</sup>
- C. 188 cm<sup>2</sup>
- D. 216 cm<sup>2</sup>

5A-6X2=10x2=26)
5XD=60=120 / 164
12X2=24

SA-5 X20 X2=20
5X12=60
12x2=24X2=48
129 (SLNECB, 2014)

15. The base of the triangle with an area of 36 cm<sup>2</sup>, and height 9 cm is:

- A. 8 cm
- B. 4 cm
- C. 16 cm
- D. 32 cm

(SLNECB, 2014)

16. Given: ΔBTJ



If the area of the triangle is 24 m<sup>2</sup>, what is the value of x?

- A. -3
- B. -4
- **C**. 3
- D. 4

(SLNECB, 2014)

17. Given the half-circle. The area, in cm2, of the part without shade is:



- A. 18.3
- **B.** 26.8
- C. 25.8
- D. 29.3

(SLNECB, 2014)

- 18. The perimeter of a rectangle is :
  - A. 2 L + W
  - B. L + 2W
  - C. 2 (L + W)
  - D.  $\frac{1}{2}(L + W)$

(SLNECB, 2017)

- 19. In the figure below, the hypotenuse of this triangle is:
  - A. 15 cm
  - B. 10 cm
  - C. 20 cm
  - D.  $4\sqrt{3}$



(SLNECB, 2017)

- 20. The breadth of rectangle whose area is 400 cm2, and its length is 25 cm is:
  - A. 16 cm
  - B. 14 cm
  - C. 18 cm
  - D. 12 cm

(SLNECB, 2017)

- 21. Find the circumference of the circle whose diameter is 14 cm:
  - A. 1078 cm
  - B. 176 cm
  - C. 44 cm
  - D. 88 cm

(SLNECB, 2018)

- 22. The length of the rectangle is more than its breath by 4 cm. If its perimeter is 32 cm, its length is:
  - A. 6 cm
  - B. 10 cm
  - C. 16 cm
  - D. 32 cm

(SLNECB, 2018)

#### 8.2. Structured questions

1. A rectangle has width of 7 m and a perimeter of 30 m. Find its length.

(SLNECB, 2006)

- 2. If a circle has a diameter of 14 m, using  $\pi = \frac{22}{7}$ , find its:
  - a) Radius
  - b) Circumference

(SLNECB, 2006)

3. a) Find the area of the given trapezium.



c) Calculate the area of a parallelogram with length 15 cm and height 10cm?

d) Find the perimeter of a rectangle with length 12 cm and width 50 mm.

(SLNECB, 2007)

4. Calculate the shaded area of the figure below.



(SLNECB, 2009)

The radius of a wheel is 3.5 cm. Calculate the distance travelled by the wheel in 20 revolutions.

(SLNECB, 2009)

6. The diagram shows a trapezium. Calculate the area of the trapezium.



(SLNECB, 2010,2015)

#### 7. Given:



Find the area of the shaded part.

4+4+17

(SLNECB, 2014)

#### 8. Find the perimeter of the below figure .



(SLNECB, 2018)

### CHAPTER 9: VOLUME, CAPACITY AND WEIGHT

## 9.1. Multiple choice questions

- 1. If the weight of a sack of sugar is 50 kg, what is the weight of 825 of sugar?
  - A. 42550 kg
  - B. 41250 kg
  - C. 32150 kg
  - D. 33250 kg

(SLNECB, 2008)

- 2. 1168 biscuits were backed into packets of 16 each. The number of packets was:
  - A. 73
  - **B.** 83
  - C. 74
  - D. 93

(SLNECB, 2008)

3. Mohamed's tent is a triangular prism, as shown below. Which combination of shapes makes up the bases and faces of Mohamed's tent?



- A. 2 triangles, 2 rectangles
- B. 2 triangles, 3 rectangles
- C. 3 triangles, 2 rectangles
- D. 3 triangles, 3 rectangles

(SLNECB, 2010)

4. What is the volume of the rectangular prism shown?



- A. 16 cubic feet
- B. 32 cubic feet
  - C. 56 cubic feet
- D. 64 cubic feet

(SLNECB, 2010)

- 5. Change 4,000,000 cm<sup>3</sup> into m<sup>3</sup>
  - $(A.)4 m^3$
  - **B.** 400 m<sup>3</sup>
  - C. 4000 m<sup>3</sup>
  - **D.** 3000 m<sup>3</sup>

(SLNECB, 2011)

- 6. Change 20,000 grams into kg.
  - A. 2 kg
  - **B.** 20 kg
  - C. 200 kg
  - D. 2000 kg

(SLNECB, 2011)

- 7. Calculate the volume of a cylinder, if its radius is 7 ft and the perpendicular height of the cylinder is 12 ft.
  - A. 184 ft3
  - B. 1084 ft<sup>3</sup>
  - C. 1848 ft3
  - D. 2846 ft3



(SLNECB, 2011)

- 8. When changing 0.956 tons to kilograms, the answer is:
  - A. 9.56 kg
  - B. 965 kg
  - C. 956 kg
  - D. 596 kg

(SLNECB, 2013)

- 9. The volume of a cuboid with length 11 cm width 4 cm, and height 5 cm is:
  - A. 220 cm<sup>3</sup>
  - B. 320 cm<sup>3</sup>
  - C. 420 cm<sup>3</sup>
  - D. 240 cm<sup>3</sup>

(SLNECB, 2013)

- 10. Find the volume of cylinder with radius 7 cm and height 14 cm.
  - A. 2156 cm<sup>3</sup>
  - B. 308 cm<sup>3</sup>
  - C. 15092 cm<sup>3</sup>
  - D. 616 cm<sup>3</sup>



(SLNECB, 2013)

- 11. The volume of barmil whose radius is 7 miters, height is 2 miters, will be?
  - A. 803 M<sup>3</sup>
  - B. 308 M<sup>3</sup>
  - C. 8.03 M3.
  - D. 3.08 M<sup>3</sup>

(SLNECB, 2016)

- 12. 32450 grams is equal to:
  - A. 324.50 kg
  - B. 3.2450 kg
  - C. 32,450
  - D. 3245.0 kg

(SLNECB, 2016)

- 13. 300,000 cm when changed to Km, we get:
  - A. 3 Km
  - B. 30 km
  - C. 300 km
  - D. 3000 km

(SLNECB, 2017)

- 14. Which of these measure is the measure of weight:
  - A. Meter
  - **B.** Centimetre
  - C. Kilometre
  - D. kilogram

(SLNECB, 2018)

- 15. Change 15000 m to Km:
  - A. 150
  - **B.** 100
  - C. 15
  - **D**. 10

(SLNECB, 2018)

- 16. 2.5 L when changed to milliliter is:
  - A. 2500 ml
  - B. 25 ml
  - C. 22.5 ml
  - D. 225 ml

(SLNECB, 2018)

# 9.2. Structured questions

- 1. A closed cylinder has a diameter of 18 cm and a height of 12 cm (take  $\pi$ =3.14).
  - a) What is the surface area of the closed cylinder?

| b) | b) Calculate its volume. |  |
|----|--------------------------|--|
|    |                          |  |
|    |                          |  |

(SLECB, 2008)

2. A cylinder tank of radius 3.5 m below is half full of water.



Calculate:

a) The volume of the cylinder.

b) The volume of the water.

(SLNECB, 2009)

3. Find the volume of cylinder with diameter 6 cm and height of 4 cm. Hint:  $\pi = \frac{22}{7}$ .



(SLNECB, 2012,2015)

4. Find the volume of a cylinder with radius 4 cm and height of 21 sm.

(SLNECB, 2013)

5. If the volume of a cylinder is 1056 cm<sup>3</sup> and its height is 21 cm, find the length of its radius.

(SLNECB, 2014)

6. A cylinder with volume 616 m³, has radius 7 m. Calculate the height of the cylinder?

(SLNECB, 2016)

# CHAPTER 10: SPEED, TIME AND DISTANCE

# 10.1. Multiple choice questions

- Calculate the distance travelled by car if the speed of the car was 80 km/h during 2 hours.
  - A. 40 km
  - B. 60 km
  - C. 80 km
  - D. 160 km



(SLNECB, 2011)

- 2. An athletic-man runs 960 m 120 seconds. His velocity is:
  - A. 12 m/s
  - B. 8 m/s
  - C. 16 m/s
  - D. 10 m/s



(SLNECB, 2013)

- 3. When 18 m/sec is changed to known, icro-
  - A. 96.400 km/hr
  - B. 68.400 km/hr
  - C. 64.8 km/hr
  - D. 84.600 km/hr

(SLNECB, 2014)

- 4. The speed of a lorry is 80km/hr. What distance does it cover in 5 hours?
  - A. 80 km
  - B. 400 km
  - C. 200 km
  - D. 160 km

(SLNECB, 2018)

- 5. Change 7200 second to hours:
  - A, 3,
  - B. 1
  - C. 2.
  - D. 4

(SLNECB, 2018)

### 10.2. Structured questions

| A  | driver drove from Berbera to Hargeisa (174 km) apart in 3 hours.                                                         |
|----|--------------------------------------------------------------------------------------------------------------------------|
|    | What was his average speed?                                                                                              |
|    |                                                                                                                          |
|    |                                                                                                                          |
| b  | If he drove at an average speed of 30 km/h for the first hour, what wa                                                   |
|    | his average speed during the rest of the journey?                                                                        |
|    |                                                                                                                          |
|    |                                                                                                                          |
|    |                                                                                                                          |
|    | gangas)<br>Sanat i salah |
|    |                                                                                                                          |
|    | 15 mile 20 30 30 30 30 30 30 30 30 30 30 30 30 30                                                                        |
| c) | How long would he have taken if his average speed was 29 km/h?                                                           |
|    |                                                                                                                          |
|    |                                                                                                                          |
|    |                                                                                                                          |
|    | (SI NECR 2008                                                                                                            |

2. Fill in the empty spaces.

|   | Distance | Time   | Cross              |
|---|----------|--------|--------------------|
| A | 20 km    |        | Speed              |
| В |          | 2 hrs  | MATERIAL PROPERTY. |
|   |          | 90 min | 90 km/h            |
| C | 45 km    |        |                    |
|   |          |        | 30 km/h            |

(SLNECB, 2009)

3. The diagram shows the speedometer in a car. The car travels at the speed shown on the speedometer for 15 minutes. How many kilometers has the car travelled in this time?



SCHOOL STATE OF THE PROPERTY O

(SLNECB, 2010)

4. Fill the table below:

| Distance (m) | Time (sec)           | Velocity (m/s) |
|--------------|----------------------|----------------|
| 80 m         | 2 seconds            |                |
| Latta St.    | 3 seconds            | 60 m/s         |
| 20 m         | walling state of the | 5 m/s          |

(SLNECB, 2012)

| 5. | a driver drove from Berbera to Hargeisa 174km apart in 3 hours. What was his average speed?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | DELETE A CONTROL OF THE PROPERTY OF THE PROPER |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

(SLNECB, 2015)

### **CHAPTER 11: MONEY**

### 11.1. Multiple choice questions

- 1. The buying price of a camel was \$700 and the selling price was \$905. The profit was:
  - A. \$200
  - B. \$215
  - C. \$205
  - **D.** \$195

(SLNECB, 2008)

- 2. The price of dining furniture has been discounted by 15%. If it sold for \$2278, the original price was:
  - A. \$1936
  - B. \$2428
  - C. \$2620
  - D. \$2680



Best 1



Seet 2



(SLNECB, 2009)

- 3. A pair of sandals is on sale for 20% off the original price at Hargeisa stores. If the original price is \$16, what is the sale price?
  - A. \$3.20
  - B. \$12
  - C. \$12.80
  - D. \$19.20

(SLNECB, 2010)

4. Muna gives the clerk a twenty-dollar bill to pay for oranges shown in the diagram below. The cost of the oranges is \$1.89 per kilogram. How much money will Muna receive in change?



- A. Under \$5
- B. Between \$5 and \$7
- C. Between \$7 and \$9
- D. Over \$9

(SLNECB, 2010)

### 11.2. Structured questions

1. A car is on sale in Burao. What is the price of the car?

| 1         | 17.(17)                                                                | 15% off normal<br>Normal price = \$ |                     |
|-----------|------------------------------------------------------------------------|-------------------------------------|---------------------|
| ٦         |                                                                        |                                     |                     |
|           |                                                                        |                                     |                     |
|           |                                                                        |                                     |                     |
|           |                                                                        |                                     |                     |
|           |                                                                        | /6                                  | NEOD                |
| A r       | man bought 15 goats by \$20 each and the                               | (Sen he sold each                   | BLNECB,<br>by \$23. |
| A r<br>Ca | man bought 15 goats by \$20 each and the                               | (\$<br>en he sold each              | by \$23.            |
| Ca        | man bought 15 goats by \$20 each and the<br>lculate:<br>The cost price | (Sen he sold each                   | SLNECB,<br>by \$23. |
| Ca        | lculate:                                                               | (Sen he sold each                   | by \$23.            |
| Ca        | lculate:                                                               | (Sen he sold each                   | by \$23.            |
| Ca        | lculate:                                                               | (Sen he sold each                   | by \$23.            |
| Ca<br>a)  | lculate:                                                               | (Sen he sold each                   | by \$23.            |
| Ca<br>a)  | The cost price                                                         | (Sen he sold each                   | by \$23.            |
| Ca<br>a)  | The cost price                                                         | (Sen he sold each                   | by \$23.            |
| Ca<br>a)  | The cost price                                                         | (Sen he sold each                   | by \$23.            |
| Caa)      | The cost price  The selling price.                                     | (Sen he sold each                   | by \$23.            |
| Caa)      | The cost price                                                         | en he sold each                     | by \$23.            |

# **CHAPTER 12: GEOMETRY**

## 12.1. Multiple choice questions

- 1. In the figure, the value of yo is equal to:
  - A. 230°
  - B. 310<sup>0</sup>
  - C. 130°
  - D. 220°



(SLNECB, 2006)

- 2. The length of the missing side is:
  - A. 24 cm
    - B. 18 cm
    - C. 32 cm
    - D. 576 cm



(SLNECB, 2006)

X+60+80-180

- 3. The value of x in the triangle is:
  - A. 70°
  - B. 40°
  - C, 60°
  - D. 50°



(SLNECB, 2007)

- 4. The value of y in the right triangle is:
  - A. 40 cm
  - B.)61 cm
  - C. 41 cm
  - D. 70 cm



5. the value of x in the figure is:

- A. 100°
- B. 80°
- C. 60°
- D. 470



(SLNECB, 2007)

Eugen By page

(SLNECB, 2008)

6. In the figure below, triangle ABC is a right angled triangle and angle  $A = 40^{\circ}$ . What is the value of angled ECD?





C. 130°D. 40°



(SLNECB, 2009)

7. Which of the following angles measures about 60°?









(SLNECB, 2009)

8. Which of the figures below has the greatest area?









(SLNECB, 2009)

- 9. What is the length of YZ?
  - **A.** 9 cm
  - **B.**/15 cm **C.** 19 cm
    - **D.** 25 cm



(SLNECB, 2009)

#### Certificate of Primary Education Grade Eight Maths Examinations

10. What is the value of angle marked "X" as shown below:

- A. 10<sup>0</sup>
- B. 30°
- c. 50°
- D. 75°



(SLNECB, 2011)

11. A triangle ABC has side lengths of a = 4 ft, b = 3 ft. find the length of "c" as

shown below.

- A. 5 ft
- B. 7 ft
- C. 12 ft
- D. 10 ft



C= 02+32 C= 42+32 (=16+9

(SLNECB, 2011)

12. Given: A // B



The size of angle x is:

- A. 40°
- B 140°
- C. 60º
- D. 80°

(SLNECB, 2013)

Certificate of Primary Education Grade Eight Maths Examinations

13. Given: ∆ABC



The length of the hypotenuse is:

- A. 10 cm
- B. 12 cm
- C. 9 cm
- D. 7 cm

(SLNECB, 2013)

14. Given: triangle CDB which is extended to A.



Angle ABD is equal to:

- A. 140°
- B. 50°
- C. Angle DBC + angle BCD
- D) angle BCD + angle CDB

(SLNECB, 2013)

15. Given: triangle ABC.



The value of x is:

- A. 3 m
- B. 12 m
- **c.** 6 m
  - D. 15 m

Certificate of Primary Education
Grade Eight Maths Examinations



(SLNECB, 2013)

#### 16. Given: the following triangle MNW



The value of x is equal to:

- A. 6
- $\frac{8}{3}$
- c.  $\frac{3}{8}$
- D. 12

(SLNECB, 2014)

17. Given  $L_1$  and  $L_2$  are parallel lines and angle  $X = 40^\circ$ .



If Y = 3X + 20, angle Y is equal to:







**D.** 180<sup>0</sup>

B

(SLNECB, 2014)

**18.** In this figure, the angle  $ADC = 90^{\circ}$  AB || D





The angle ABD =  $60^{\circ}$ , then, the value of angle ADB is:

- A. 60°.
- B. 450
- C. 120°.
- D. 30<sup>0</sup>

#### 19. The figure shows:

AE = EB, EBC =  $60^{\circ}$  Angle AEB is

- A. 45°.
- B. 350
- C. 38°.
- D. 30°

(SLNECB, 2016)



(SLNECB, 2016)

- 20. The sum of the interior angles of triangle is :
  - A. 30.
  - B. 90
  - C. 180 .
  - D. 27

(SLNECB, 2016)

#### 21. Given





The length of the missing side X is:

- A. 5.7
- **B.** 5.9
- C. 7.5
- **D.** 7.9

(SLNECB, 2017)

- 22. The measure of the exterior angle of polygon with six sides is :
  - A. 90°
  - B. 720
  - C. 45°
  - **D**.  $60^{\circ}$

(SLNECB, 2017)

- 23. The longest side of right-angled triangle is equal to :
  - B. Hypotenuse
  - T. Diameter
  - J. Breadth
  - X. Radius



(SLNECB, 2017)

B

24. Given



Angle W is equal to:

(SLNECB, 2017)

25. The length "b" of this right angled triangle is :



- A. 4 cm
- B. 4.5 cm
- C. 6 cm
- D. 15 cm



(SLNECB, 2017)

- 26. The square of the hypotenuses of right triangle is :
  - A. Sum of the other two sides
  - B. Sum of the square of the other two sides
  - C. Subtraction of the other two sides
  - D. Multiplication of the other two sides

(SLNECB, 2017)

#### Certificate of Primary Education Grade Eight Maths Examinations

### 27. Which of these triangle is isosceles?







D. (SLNECB, 2018)

28. Calculate the length x.



- A. 7 cm
- B. 5 cm
- C. 13 cm
- D. 12 cm

(SLNECB, 2018)

29. A. 100°

**B**. 80<sup>0</sup>

C. 60°

C. 40°

The value of angle X is:

(SLNECB, 2018)

#### 12.2. Structured questions

1. Find the size of the angles marked with letters  $x^0$ ,  $y^0$  and  $m^0$ .





(SLNECB, 2006)

2. Work out the value of the missing angles w, x and y.





3. Calculate the diagonal side "x".



(SLNECB, 2007)

4. Given two parallel lines AB and CD and transversal EF.





a) What is the size of I?

b) How many degrees is y?

c) Find the value of r.



(SLNECB, 2008)

5. In this rectangle, given that AB = 16 cm and BC = 12 cm.



a) Find the length of AC.

b) How many lines (axes) of symmetry does it have? Draw the axes.

c) Calculate the area of the triangle ACD.

(SLNECB, 2008)

6. Work out the size of the angles r and s.



Angle r = H2

angle s = 55

(SLNECB, 2010)

7. Find the size of the exterior angle of a regular polygon with 6 sides.

(SLNECB, 2013)

### 8. Given: ΔABC extended to D.



Prove that <DCA =  $X_1 + X_2$ .

9. Given





If DC = DB, Find angle ABC?

(SLNECB, 2016)

#### 10. Find the value of X of the following polygon with 5 sides

11. Find the angles x, y, t, s and m

(SLNECB, 2018)

## 12. Find the value of X in this hexagon?



 $S = (n-2) \times 180$   $S = (6-2) \times 180$   $S = 4 \times 180$ S = 720

| 2x+2x+10+2x+2x+2x+40+x=7<br>11x+50=720<br>11x-720-50<br>11x-670 |
|-----------------------------------------------------------------|
| 11x-720-50<br>11x-670                                           |
| 11X-670                                                         |
|                                                                 |
|                                                                 |
| X= 78-88                                                        |
|                                                                 |
|                                                                 |

(SLNECB, 2018)

67.0

11/670

OSLNECB

46

#### **CHAPTER 13: AVERAGES**

#### 13.1. Multiple choice questions

| <ul> <li>1. Find the mean of the data: 70, 80, 60, 50, 30, 90, 80, 100.</li> <li>A. 50</li> <li>B. 60</li> </ul> |
|------------------------------------------------------------------------------------------------------------------|
| C. 70<br>D. 80 (SLNECB, 201                                                                                      |
| 2. The mode of the numbers 6, 7, 8, 7, 5, 10, 9, 1 and 12 is:                                                    |
| A. 6                                                                                                             |
| B. 7                                                                                                             |
| C. 8                                                                                                             |
| D. 12                                                                                                            |
| (SLNECB, 201)                                                                                                    |
| 3. The mean mark of examination results of 8 students 80, 60, 50, 40,70, 9                                       |
| 70 and 100 is:                                                                                                   |
| <b>A.</b> 50 <b>B.</b> 60                                                                                        |
| © 70                                                                                                             |
| D. 80                                                                                                            |
| (SLNECB, 2012                                                                                                    |
| 4. The median of these measurements 1.5 cm, 24 cm, 18 cm, 1.8 cm, 1.                                             |
| cm, 1.4 cm and 2 cm is:                                                                                          |
| <b>A.</b> 1.7 cm                                                                                                 |
| <b>B.</b> 2 cm                                                                                                   |
| <b>C.</b> 1.9 cm                                                                                                 |
| ( <b>D.</b> )1.8 cm                                                                                              |
| (SLNECB, 2013                                                                                                    |
| 5. If the ages of a family is 38, 6, 18, 10, 24, 50 and 14, what is its median?                                  |
| A. 24<br>B. 22 50,38,24,18,14,10,6                                                                               |
| B. 22                                                                                                            |
| <b>C</b> . 18                                                                                                    |
| D. 22.8                                                                                                          |
| (SLNECB, 2014                                                                                                    |
| 6. Ali sat an examination of 7 subjects and received these marks: 54, 65, 89,                                    |
| 71, 82, 50 and 93. What is the average of his marks?                                                             |

(SLNECB, 2014)

B. 70C. 71D. 72

mean mode median range Somaliland National Examination and Certificate Board

Certificate of Primary Education Grade Eight Maths Examinations

|     | The numbers of the passengers of 9 buses were: : 17, 31, 11, 3, 51, 49, 52, 47, 34  What will be the median number of these people?  A. 34.  B. 47.  C. 31  D. 52. | (SLNECB, 2016)                   |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| 8.  | The mode numbers 5, 7, 12, 12, 17, 17, 19, 21 was A. 17 B. 19. C. 21 D. 12, 17                                                                                     |                                  |
| 9.  | Which of the below is not an average :  A. Mode  B. Mean  C. Median                                                                                                | (SLNECB, 2016)                   |
| 10. | D. Sum  The mode of these numbers 37,41,37,36,39,39,39,40,4  A. 40 B. 39 C. 37                                                                                     |                                  |
| 11. | D. 41  The age of 6 boys is 7,10,12, 10, 13, and 14 the mean of A. 12  B. 11 C. 10 D. 41                                                                           | (SLNECB, 2017) of their ages is: |
| 12. | D. 12  The mode of this group: 40, 30, 31, 41, 42, 30, 45, is; A. 41 B. 31 C. 30 D. 42                                                                             | (SLNECB, 2017)                   |
| 13  | B. The age of 8 boys are 12, 18, 19, 3, 11, 6, 4, 7. Their n B. 11 C. 12 D. 18                                                                                     |                                  |
|     |                                                                                                                                                                    | SLNECB, 2018)                    |

#### 13.2. Structured questions

A student scored the following marks from 6 subjects:

60, 75, 80, 75, 90, 50.

a) Find the mean

b) Find the mode

(SLNECB, 2010)

2. 12 students scored the following marks:

5, 9, 5, 8, 4, 8, 6, 5, 3, 10, 7, 9

a) Find the median mark

- b) Find the mean mark.

(SLNECB, 2011)

3. The mean of the ages of three girls is 9. Two of them are aged 11 and 7.

Find the age of 3rd girl?

(SLNECB, 2016)

### CHAPTER 14: GRAPHS

### 14.1. Multiple choice questions

 The graph below shows a Borama restaurant's profit each year for 5 years.



Which year had the greatest increase in profit from the year before?

- A. 2003
- B. 2004
- C) 2005
  - D. 2006

(SLNECB, 2010)

- 2. A triangle is plotted on the coordinate plane as shown. Which coordinates represent, in order, the locations of point R, point S iyo point T?
  - A. (3, 2), (7, 5) and (5, 8)
  - B. (2, 3), (7, 5) and (8, 5)
  - C. (2, 3), (5, 7) and (8, 5)
    - D. (3, 2), (5, 7) and (5, 8)



3. This circle graph shows Jama's Field of 60 hectares.



The area of the field which is grown FRUITS:

- A. 16 hi
- B. 30 hi
- C. 20 hi
- D. 25 hi

(SLNECB, 2013)

- 4. In which quadrant is this point (-17, 2)?
  - A. First
  - B. Third
  - C. Fourth
  - D. Second

(SLNECB, 2014)

5. This circle graph stands for the school garden of 36 hectare.



The area of the part grown with grass and flowers is:

- A. 23 hi
- B. 24 hi
- C. 25 hi
- D. 26 hi

(SLNECB, 2014)

Somaliland National Examination and Certificate Board

6. Graph of 2 y = 3x + 1 is:

Certificate of Primary Education Grade Eight Maths Examinations





C. .

(SLNECB, 2016)



| TX  | 3 X+1   | 4)   |
|-----|---------|------|
| 12  | 3(2)+1  | 7    |
| 1   | 3(1)+1  | 4    |
| 0   | 3(0)+1  |      |
| -1  | 3(-1)+1 | -21  |
| 1-2 | 3(-2)+1 | 1-5) |



### 14.2. Structured questions

1. Find the coordinates of A, B, C and D.



- a) A(3, 2)
- b) B(\_\_\_\_, \_\_\_\_)
- c) C(<u>0</u>, <u>4</u>)
- d) D(-4, -3)

(SLNECB, 2006)

2. Five teams took part in a sports competition. Their scores were as follows.

| Team   | ٨     |    |    |      |   |
|--------|-------|----|----|------|---|
|        | A     | В  | C  | D    | F |
| Scores | 15 12 |    |    | J -  |   |
|        |       | 12 | 10 | < 14 | q |

a) Draw their bar chart to display the data.



- c) How many points did the winning team win over the second team?
- d) What is the mean score?

 $\frac{15+12+10+14+9}{5} = \frac{60}{5} = \frac{12}{5}$  (SLNECB, 2008)

3. A farmer uses his land to cultivate different crops such as bananas, wheat and rice as shown below.

If the area of the farm is 24 hectares, calculate:

a) The area cultivated for bananas.



| b) | The | area | cultivated | for | rice. |
|----|-----|------|------------|-----|-------|
|----|-----|------|------------|-----|-------|

(SLNECB, 2009)

4. Ali planned his garden estimated 24 hectares as follows:



Calculate:

a) The number of hectares of cultivated rice.

b) The number of hectares of uncultivated land.

(SLNECB, 2011)

# CHAPTER 15: PROBABILITY

## 15.1

| M  | fultiple choice questions                        |                       |
|----|--------------------------------------------------|-----------------------|
|    | A die is tossed. The probability of getting 6 is | . Andrew to have been |
| 1. | A. 1                                             |                       |
|    | В. 6                                             |                       |
|    | c. 1/6                                           |                       |
|    | D. 5/6                                           |                       |
|    |                                                  | (SLNECB, 2013)        |
| 2. | The probability of tossing a die to get 5 is:    |                       |
|    | A. 1/6                                           |                       |
|    | в. 4/6                                           |                       |
|    | c. 5/6                                           |                       |
|    | D. 5                                             |                       |
|    |                                                  | (SLNECB, 2014)        |
| 3. | . The event of the probability to get the head v |                       |
|    | A. 1/4                                           |                       |
|    | B. 1                                             |                       |
|    | C. 1/2                                           |                       |
|    | D. $\frac{1}{3}$                                 |                       |
| 1  |                                                  | (SLNECB, 2017)        |
| 4. | When die is tossed, the probability to get 2 is  | s:                    |
|    | A. $\frac{1}{3}$                                 |                       |
|    | B. $\frac{2}{6}$                                 |                       |
|    | C. $\frac{2}{3}$                                 |                       |
|    | D. $\frac{1}{6}$                                 |                       |

### 15.2. Structured questions

| Se | elected at random.                                                       |
|----|--------------------------------------------------------------------------|
| a) | What is the probability of getting a red ball?                           |
|    |                                                                          |
|    |                                                                          |
|    |                                                                          |
| b) | What is the probability of a ball that is not red?                       |
|    |                                                                          |
|    |                                                                          |
|    |                                                                          |
| c) | What is the probability of obtaining a ball that is either red or black? |
|    |                                                                          |
|    |                                                                          |
|    |                                                                          |
| -  | (SUNECE 2008)                                                            |

## CHAPTER 16: ALGEBRA

## 16.1. Multiple choice questions

- 1. 2y(3-5) is equal to:
  - A. -2y

  - B. 2y Gy-10y
  - D. -4y

- 2. If 3x-9=12, then the value of x is:
  - A. 1
  - B. 7
  - C. 24
  - D. 18

(SLNECB, 2006)

- 3. The solution of the equation 5x+4=3x+10 is:
  - A. 2
  - B. 3
  - C. 1
  - D. 7

(SLNECB, 2007)

- 4. 3(4x+2y)+2(5x-3y) simplifies to: A. 20x+y (12x+6y)+(10x-6y)
  - B. 22x

  - c. 22x+12, (12+10) +(6-6)
  - D. 2x+12y

(SLNECB, 2008)

- 5. The solution of the equation  $x^2-3x+2=0$  is:
  - A.) 1 iyo 2
  - 241 = 2 B. 1 iyo 3
  - C. 1 iyo -2
  - D. 1 iyo -3

(SLNECB, 2009)

6. If a = 3 and b = 4, what is the value of  $a^3 - b^3$ ?

17-64

- A. -27
- B) -37
  - C. -47
  - D. 27

(SLNECB, 2009)

the number?

**OSLN** 

| A. 24 B. 28 C. 20 D. 33                                                                                                                                              |                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| 8. When simplified $9a-6b+a-b$ becomes                                                                                                                               | (SLNECB, 2009)                     |
| A. 9a – 7b B. 10a – 6b C. 9a – 6b D. 10a – 7b                                                                                                                        | (SLNECB, 2009)                     |
| 9. Solve the equation for $x$ . $2(6+2x)=8x$ A. $x = 1$ Ahmed  B. $x = 2$ C. $x = 3$                                                                                 | 0.0                                |
| <ul> <li>D. x = 6</li> <li>10. Ahmed is three times as old as Suad. Deeqa is three Ahmed. If Deeqa is 39 years old. How old is Suad?</li> <li>A. 12 years</li> </ul> | (SLNECB, 2010)<br>times older than |
| B. 13 years C. 14 years D. 16 years                                                                                                                                  | (SI NECE 2040)                     |
| 11. Simplify: $3(m+4n)+3(2m+n)$ .  A. $9m+15n$ B. $9m+7n$ C. $5m+12n$ (3m+6m)+(12n+3n)                                                                               | (SLNECB, 2010)                     |
| <ul><li>D. 5m + 7n</li><li>12. The difference between two numbers is 5 and the square 169, find the two numbers.</li></ul>                                           | (SLNECB, 2010)                     |
| A. 9 and 4 B. 8 and 3 C. 7 and 2 D. 6 and 1                                                                                                                          |                                    |
| 13. If $3(x-1)=6$ , find the value of $x$ .  A. 2  B. 3  C. 5                                                                                                        | (SLNECB, 2011)                     |
|                                                                                                                                                                      | (SLNECB, 2011)                     |
| ECB X                                                                                                                                                                | 93                                 |

7. A number is multiplied by 3 and 6 is added to it. The answer is 66. What is

14. If x = 3 and y = 4 find the value of  $x^2 + x_3$ . 32+(3)(4)

9+12

- (A.) 21
- B. 25
- C. 26
- D. 28

(SLNECB, 2011)

15. Find the value of x if 3(x-1)=18. 3X-3=18

- A. 5
- B. -5
- C. 7
- D. -7

3×-18+3

(SLNECB, 2012)

16. Solve for x:  $\frac{x}{4} = \frac{5}{2}$ 

- A. 10
- B. 5
- C. 8
- D. 4

(SLNECB, 2012)

17. If a = 3 and b = 4 what is the value of  $(a+b)^2$ ?

- A. 48
- B. 27
- C. 49
- D. 144

(SLNECB, 2012)

18. What is the value of x and y if: 3x + 2y = 7

$$x+y=3$$

- A. (1, 2)
- B. (2, 3)
- C. (1, 3)
- D. (2, 1)

(SLNECB, 2012)

19. The ordered pair that makes this simultaneous equation:

$$2x + y = -3$$

$$x + 2y = -3$$

- A. (-1, 1)
- B. (1, -1)
- C. (1, 1)
- D. (-1, -1)

(SLNECB, 2013)

- **20.** This equation  $3x^2 + 2x 4 = 0$ , when x = -2, the value of this equation is:
  - A. +4
  - B. -4
  - C. +12
  - D. -12

(SLNECB, 2013)

- 21. Factorizing  $16x^2-4$  is:
  - A. (4x-2)(4x-2)
  - **B.** (4x-2)(4x+2)
  - C. (-4x + 2)(4x 2)
  - **D.** (-4x-2)(-4x+2)

(SLNECB, 2013)

**22.** In this equation , 4(2x-2)=24, the value of x is: 8X-8=24

8x2 32

- A. -4
- B. 2
- C. -2
- D. 4

(SLNECB, 2013)

- 23. Factoring  $32^2 8$  we get:
  - **A.** 8(2x-1)(2x-1)
  - B. 8(2x-1)(2x+1)
  - c. 8(-2x+1)(2x+1)
  - D. 8(-2x-1)(2x+1)

(SLNECB, 2014)

- **24.** Expanding this expression (n-2)(n-9) is:
  - A. n2-1 h+18 22 n2-
  - B.  $n^2 + 1 h + 18$
  - C.  $n^2 1h 18$
  - D.  $n^2 + 1 h 18$

(SLNECB, 2014)

- **25.** The value of this equation  $-3x^2-5x-4=0$  when x = -1 is:
  - A. -2
  - B. 2
  - C. -3
  - D. 3

(SLNECB, 2014)

26. The value of x and y of these simultaneous equations are:

$$2x - 3y = 4$$

- x + 2y = 9
- A. (2, 5)
- **B**. (5, 2)
- C. (-2, 5) D. (-5, 2)

(SLNECB, 2014)

27. Simplifying  $(7x^2-2xy)-(5x^2+3xy)$  we obtain:

$$-2x^2-5xy$$

Simplifying (1)

A. 
$$-2x^2-5xy$$
  $(7x^2-5xy^2)$  - (2xy+3xy)

B.  $2x^2-5xy$   $2x^2-5xy$ 

$$= 2x^2 - 5xy$$

B. 
$$2x^2 + 5xy$$

D. 
$$2x^2 + 5xy$$

(SLNECB, 2014)

28. In a class the number of girls is twice the number of the boys. If 60 students are in the class, what is the number of the boys?

(SLNECB, 2014)

29. In the equation ,  $\frac{1}{s} = \frac{1}{r} + \frac{1}{t}$ , find **s** if r=12, t= 18:

(SLNECB, 2016)

2(2x-5)=3(x-4)30. Solve

$$4x - 3x = 12 - 10$$
  
 $x = 2$ 

(SLNECB, 2016)

31. A rectangle has its length twice its breadth. if the perimeter is 18 cm, what will the length be?

- A. 12 cm.
- B. 6 cm.
- C. 8 cm.
- D. 10 cm.

(SLNECB, 2016)

32. Factorize  $12 x^2 + 14x + 4$ :

A. 
$$(6x + 4)(2x + 1)$$

B. 
$$(6x-4)(2x+1)$$

D. 
$$(6x + 4)(2x - 1)$$

(SLNECB, 2017)

- **33.** Solving  $y^2 9 = 0$ , the value of y is:
  - **A.**  $y = \pm 3$
  - **B.**  $y = \pm 1$
  - **C.**  $y = \pm 9$
  - **D**. y = 0

(SLNECB, 2017)

- **34.** Find the slope of this line equation  $y = \frac{6}{5}X 4$ :
  - A.
  - **B.**  $\frac{6}{5}$
  - C. 6
  - D. 4

(SLNECB, 2017)

- 35. The slope of the line passing these points B(-2,6) and T(-7,5) is:

  - A.  $\frac{2}{5}$ B.  $\frac{-2}{5}$ C.  $\frac{-1}{5}$

(SLNECB, 2017)

- **36.** Find the equation with slope  $M = \frac{2}{3}$ :, that passes the point (3, 4):
  - **A.**  $y = \frac{3}{2} X + 2$

  - $y = \frac{1}{2}X + 2$  **B.**  $y = \frac{2}{3}X + 2$  **C.**  $y = \frac{2}{3}X 2$ 
    - **D**.  $y = \frac{3}{2} X 2$

= y-y1 = M(x-x1)

 $1-4-\frac{2}{3}(x-3)$   $-4-\frac{2}{3}x-6$   $1-\frac{2}{3}x-6+4$   $1-\frac{2}{3}x-6+4$   $1-\frac{2}{3}x-6+4$ (SLNECB, 2017)

- 37. The value of m in this equation,  $m^2 16 = 0$  is:
  - A. 4
  - B. -4
  - c. ±4
  - D. 16

- (SLNECB, 2018)
- 38. The value of y in the equation 3y + 5 = y 7 is:
  - **B.** 12
  - T. -6
  - J. 6
  - X. -12

(SLNECB, 2018)

## Sonaliland National Examination Somania Tallorial E and Certificate Board

Certificate of Primary Education **Grade Eight Maths Examinations** 

39. The Factors of  $x^2 + 5x + 4 = 0$  are :

(SLNECB, 2018)

40. The slope of the line passing through the two points (5, 6) and (3,4) is:

$$M = \frac{4-6}{3-5}$$

(SLNECB, 2018)

#### 16.2. Structured questions

1. Simplify:

a) 
$$\frac{16x^2 + 8x}{4x}$$



b) 
$$(2y-3)(y+2)^{\circ}$$



(SLNECB, 2006)

**2.** Solve the simultaneous equations: x + y = 2

$$3x + 2y + 5 = 10$$

(SLNECB, 2006)

3. Find the equation of the line which passes through the points (-2, 3) and (-4, -1).



(SLNECB, 2006)

Somaliland National Examination and Certificate Board

Certificate of Primary Education Grade Eight Maths Examinations

|   |        | 2.2 | -51 | -3  |
|---|--------|-----|-----|-----|
| A | solve: | 44  | -3y | -5. |

| The same of the sa |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

5. Simplify the algebraic expressions:

a) 
$$3x+2\sqrt{7}x-4\sqrt{5}x+6$$
.

$$(3x-7x+5x)+(2-4+6)$$
  
 $(-4x+5x)+(-2+6)$   
 $(-x)+(-4)$ 

b) 
$$(14x+5y)-(7x-6y)$$

$$\frac{(14x+4x)-(5y-6y)}{(21x)-(-y)}$$

c) 
$$-9x(x-3)$$

$$\frac{-9x(x-3)}{-9x^2-27x} - 9x^2 + 27x$$

(SLNECB, 2007)

(SLNECB, 2006)

6. Solve the quadratic equation:  $x^2 - 5x - 24 = 0$ .

$$(x^2 - 8x) - (x^2 - 8x) - (x^$$

(SLNECB, 2007)

7. Draw the line y=x+3 on this plane.





(SLNECB, 2007)

8. Solve the simultaneous equations.

$$3x + 5y = 8$$

$$6x - 2y = 4$$

(SLNECB, 2007)

9. Solve these equations:

Sonneliland National Examination
Sonneliland Certificate Board Certificate of Primary Education **Grade Eight Maths Examinations** (SLNECB, 2008) 10. Calculate the slope of the line that passes through A (1, 2) and B (-1, -4). (SLNECB, 2009) 11. Ismail is 12 years older than his sister Zainab. In 6 years time, Ismail will be twice as old as Zainab. Find their present ages? (SLNECB, 2009) 12. Simplify: 8c+5d-c-3d. (SLNECB, 2010) 13. Solve the equation: 4(2x-7)=12.

(SLNECB, 2010)

14. Ayan has some unknown weights labeled a and b and some 5 kg and 10 kg weights. She finds that the following combinations of weights balance.



Find the value of a and b.

(SLNECB, 2010)

**15.** Solve this quadratic equation by quadratic formula:  $6x^2 - 7x + 2 = 0$ .

| X = -b+ 1 62- 4ac 1  | X=7+1-97 0            |
|----------------------|-----------------------|
| . 29                 | 12                    |
| X=-(-7)=1-72-4(6)(2) | x-3+(-97)             |
| .2(6)                | 12                    |
| x=7=1-49-48.         | 1x=7+(-97) 810x=7-1   |
| 12 x=90 or x=        | 104 02 (SLNECB, 2010) |

**16.** Given: 3x + 2y = 7

x + 3y = 7

Find the value of x and y by any method

| . The the value of x and y by any meth | iou.           |
|----------------------------------------|----------------|
| 3x=7-2y                                | 7-24-7-34      |
| 3 0                                    | 3 0            |
| X-7-24                                 | 7-24=21-94     |
| 3                                      | 7-21-24-94     |
| X+3y=7                                 | -1474          |
| X- 1-54                                | -7-7           |
|                                        | y=2/           |
| To find ,                              | (SLNECB, 2011) |

**©SLNECB** 

X=2-30

102

Certificate of Primary Education Sonaliland National Examination Grade Eight Maths Examinations Somaliferificate Board 17. Find the value of x if  $x^2 - 7x + 6 = 0$ . (Solve by any method). (SLNECB, 2012) 18.a) Factorize:  $6x^2 + 7x + 1$ . b) Solve this equation:  $2x^2 + 2x - 12 = 0$ . 2x2+12x-12x2=0 (SLNECB, 2013) 19. The sum of two numbers is 24 and their difference is 10. Find the numbers. (SLNECB, 2013) ©SLNECB 103

| (SI NECE 204       |
|--------------------|
| (SLNECB, 2014      |
| echelped give      |
|                    |
| m North            |
| (SLNECB, 2014      |
| they give 17. Find |
|                    |
|                    |
|                    |
|                    |
| (SLNECB, 2014      |
|                    |
| 8-11               |
| 179                |
|                    |
|                    |
| (SLNECB, 2016      |
|                    |
|                    |
|                    |
|                    |
| (SLNECB, 2016)     |
|                    |

| 4. 5 | Solve the equation $X^2 + 2X - 15 = 0$                                                                             |
|------|--------------------------------------------------------------------------------------------------------------------|
| -    |                                                                                                                    |
| -    |                                                                                                                    |
| 14   | (SLNECB, 2016) A man is 35 years older than his son if the sum of their ages is 55. What is a) The age of the son? |
|      | (SLNECB, 2016<br>b) The age of father ?                                                                            |
| 26.  | (SLNECB, 2016) Find the equation line passing these points (3, 2) and (-2, 4)                                      |
| 27.  | In this equation $2x - 3y = -5$                                                                                    |
|      | 3x + 2y = 12  Find the values of X and Y using the graph                                                           |
|      | (SLNECB, 2017                                                                                                      |

## CHAPTER 17 : TRIGONOMETRY

## 17.1. Multiple choice questions

- 1. The formula for finding Cosine is:::
  - A. Opposite
  - B. Adjacent Opposite
  - C.  $\frac{\text{Adjacent}}{\text{Hypotenuse}}$
  - $\mathbf{D.} \frac{\text{Opposite}}{\text{Hypotenuse}}$

(SLNECB, 2018)

#### 17.2. Structured questions

1. The height of a tree is 5 m. The sun rays make an angle of  $60^{\circ}$ , with the ground. What is the length of the shade the tree?



2. The ground distance between a man and a tree is 6m. If the angle of elevation of his eye is 30°, what is the height of the tree?



(SLNECB, 2018)

## CHAPTER 18: ANSWERS

## 1.1 Multiple Choice (Answers)

- 1. D
- 2. B
- 3. C
- 4. C
- 5. C
- 6. B
- 7. D
- 8. C
- 9. A
- 10.C
- 11.C
- 12.D
- 13.B
- 14.B
- 15.B
- 16.D
- 17.C
- 18.C.
- 19. C.
- 20. A
- 21. B.
- 22. B
- 23. C.
- 24. D.
- 25. D
- 26. A. 27. D.
- 28..A.

#### 1.2 Answers (Solutions)

1. a) Prime numbers greater than 10 and smaller than 20 are: {11, 13, 17, 19}.

2. a) 
$$\begin{array}{c} 5 \\ 5 \\ 29 \\ 25 \\ 4 \end{array}$$
  $\begin{array}{c} 1 \\ 5 \\ 5 \\ 0 \\ (29)_{10} = (104)_5 \end{array}$ 

**b)** 
$$(143)_5 = 1 \times 5^2 + 4 \times 5^1 + 3 \times 5^0$$
  
=  $1 \times 25 + 4 \times 5 + 3 \times 1$   
=  $25 + 20 + 3$   
=  $(48)_{10}$ 

$$(76)_{10} = (1001100)_2$$

**b)** 
$$(134)_5 = 1 \times 5^2 + 3 \times 5^1 + 4 \times 5^0$$
  
= 25 + 15 + 4 = (44)<sub>10</sub>

c) 
$$(11111)_2$$
  
= 1 × 2<sup>4</sup> + 1 × 2<sup>3</sup> + 1 × 2<sup>2</sup> + 1 × 2 + 1 × 2<sup>0</sup> = 16 + 8 + 4 + 2 + 1 =  $(31)_{10}$ 

Somaliland National Examination and Certificate Board

4. Factorization of 2310:

$$2310 = 2 \times 3 \times 5 \times 7 \times 11$$

6. Complete the table

| Base<br>10 | 46  | 39  | 98  |
|------------|-----|-----|-----|
| Base<br>5  | 141 | 124 | 343 |

Certificate of Primary Education

Grade Eight Maths Examinations

#### 2.1 Multiple Choice (Answers)

- 1. C
- 2. A
- 3. D
- 4. A
- 5. C
- 6. D

## 2.2 Answers (Solutions)

1. 
$$(2.5 + 3) - 3.4 \times 3 + 5.1$$
  
=  $5.5 - 3.4 \times 3 + 5.1$   
=  $5.5 - 3.4 \times 0.588$ 

### 3.1 Multiple Choice (Answers)

- 1. A
- 2. B
- 3. A
- 4. D
- 5. C.
- 6. D
- 7. D
- 8. B
- 9. C
- 10. C

#### 3.2 Answers (Solutions)

$$\frac{7}{6} = \frac{175 cm}{x}$$

$$7x = 6 \times 175 cm$$

$$7x = 1050 cm$$

$$x = 150 cm$$

#### 2.

$$\frac{6}{15} = \frac{240000}{x}$$

$$6x = 15 \times 24000$$

$$6x = 360,000$$

$$x = 60,000$$

3. 
$$\frac{4 \, kg}{200 \, kg} = \frac{46 \, litir}{x}$$

$$4x = 200 \times 46 litir$$

$$4x = 9200 litre$$

$$x = 2300 litre$$

**4.** 
$$(14 \times 30) = 420 \div 6 = 70$$
 Days

**5.** Ratio = 
$$1:2:3=1+2+3=6$$

**a)** Cattle = 
$$\frac{1}{6} \times 120 = \frac{120}{6} = 20$$

**b)** Goats = 
$$\frac{2}{6} \times 120 = \frac{240}{6} = 40$$

c) Camels = 
$$\frac{3}{6} \times 120 = \frac{360}{6} = 60$$

$$\frac{7}{6} = \frac{175 cm}{x}$$

$$7x = 6 \times 175 \, cm$$

$$7x = 1050 cm$$

$$x = 150 cm$$

### Somaliland National Examination and Certificate Board

Certificate of Primary Education Grade Eight Maths Examinations

7. 
$$\frac{4 \text{ kg}}{200 \text{ kg}} = \frac{46 \text{ litir}}{x}$$

$$4x = 200 \times 46 \text{ litir}$$

$$4x = 9200 \text{ litre}$$

$$x = 2300 \text{ litre}$$

8. 
$$_{12}$$
 labour X 6 days  $_{31}$  (3 labour)(X)  $_{3x} = 12 \times 6$   $_{3x} = 72 cm$   $_{x} = 24 cm$ 

$$^{9.}$$
  $_{(6 \times 28 \text{ Kg})} = 168 \text{ Kg}$   $_{(4 \times 26) \text{ Kg}} = 104 \text{ Kg}$ 

The weight of the boys = 168 Kg - 104 Kg = 64 Kg

#### **Multiple Choice (Answers)**

1. B

4.1

#### 4.2 Answers (Solutions)

1.

- a) Actual length =  $11 \text{ m} \times 2 = 22 \text{ m}$
- b) Actual breadth =  $4 \text{ m} \times 2 = 8 \text{ m}$
- c) Actual Area = 22 m  $\times$  8 m = 176 m<sup>2</sup>

## 5.1 Multiple Choice (Answers)

- 1. B
- 2. C'
- 3. B
- 4. D
- 5. A
- 6. C
- 7. B
- 8. C
- 9. A
- 10.B
- 11.B

#### Somaliland National Examination and Certificate Board

12.Bh

13.C

14.C

15.B

16.B

17. C

18.C

19.B

20.B

21. A

22. C

23. C

24. B

25. B

26. B

27. A

#### 5.2 Answers (Solutions)

1)

a) 15 of 40 = 
$$\frac{15}{40} \times 100\% = \frac{1500}{40}\% = 37.5\%$$

**b)** 
$$40 - 15 = 25 \text{ ka } 40 = \frac{25}{40} \times 100\% = \frac{2500}{40}\% = 62.5\%$$

2)

a) 
$$(100\% - 20\%) = 80\%$$

$$\frac{80\% \times 2500}{20\%} = 10,000 \, Sstudents$$

**b)** Total students = 10,000 + 2500 = 12,500 Students

3)

a) 
$$(3 + 1 - 2) + (\frac{1}{2} + \frac{1}{3} - \frac{3}{5})$$
  
=  $(4 - 2) + (\frac{15 + 10 - 18}{30}) = 2 + \frac{7}{30}$ 

$$=2\frac{7}{30}$$

**b)** 
$$\frac{1025}{1000} = \frac{205}{20} = \frac{41}{4}$$

$$= 2\frac{7}{30}$$
**b)**  $\frac{1025}{1000} = \frac{205}{20} = \frac{41}{4}$ 
**4)**  $\frac{4}{5} \times 100\% = \frac{400}{5}\% = 80$ 
 $\frac{21}{25} \times 100\% = \frac{2100}{25}\% = 84\%$ 
 $\frac{13}{15} \times 100\% = \frac{1300}{15}\% = 86.7\%$ 
 $\frac{17}{20} \times 100\% = \frac{1700}{20}\% = 85\%$ 

$$\frac{13}{25} \times 100\% = \frac{1300}{25}\% = 84\%$$

$$\frac{15}{20} \times 100\% = \frac{1500}{20}\% = 85\%$$

She do best in social science.

**5)** 
$$21 \div 2\frac{1}{3} = 21 \div \frac{7}{3} = 21 \times \frac{3}{7} = 9$$

6) a) 
$$80,000 - 20,000 = 60,000$$
 liter a)  $80,000 + 10006 = \frac{600}{2}\% = 75\%$ 

a) 
$$80,000 - 20,000 = 60,000$$
 lite  
b)  $\frac{60,000}{80,000} \times 100\% = \frac{600}{8}\% = 75\%$ 

b) 
$$\frac{80,000}{80,000} \times 100\% = \frac{200}{8}\% = 25\%$$
  
c)  $\frac{20,000}{80,000} \times 100\% = \frac{200}{8}\% = 25\%$ 

Percentage increase = 
$$\frac{Increase}{original \ No} \ X \ 100\% = \frac{200}{1000} \ X \ 100 \% = 20 \%$$

8) 
$$\frac{3}{4} - \frac{1}{3} \times \frac{5}{3} \div \frac{2}{3} + \frac{1}{4} = \frac{3}{4} - \frac{1}{3} \times \left(\frac{5}{3} \div \frac{2}{3}\right) + \frac{1}{4}$$
$$= \frac{3}{4} - \frac{1}{3} \times \left(\frac{5}{3} \times \frac{3}{2}\right) + \frac{1}{4} = \frac{3}{4} - \frac{1}{3} \times \frac{5}{2} + \frac{1}{4}$$
$$= \frac{3}{4} - \frac{5}{6} + \frac{1}{4} = \frac{3}{4} + \frac{1}{4} - \frac{5}{6} = \frac{9+3-10}{12}$$
$$= \frac{12-10}{12} = \frac{2}{12} = \frac{1}{6}$$

9)  

$$\frac{2}{3} - \frac{1}{4} \times \frac{8}{5} + \frac{1}{3} = \frac{2}{3} - \frac{2}{5} + \frac{1}{3}$$

$$= \frac{2}{3} + \frac{1}{3} - \frac{2}{5} = \frac{10 + 5 - 6}{15}$$

$$= \frac{15 - 6}{15} = \frac{9}{15}$$

#### Multiple Choice (Answers) 6.1

- 1. B
- 2. B
- 3. B
- 4. A 5. C
- 6. D

#### 6.2 Answers (Solutions)

1. a)

b) AnB



2.

3.

**b)** 
$$(A \cap C) \cup B = \{7, 8, 11, 13\}$$

**4.** B) 
$$A \cup B = \{1,2,3,4,5,6,7,8\}$$

5. a) i) AUB

$$\overline{A} = \{ 1,6,7,8 \}$$
  
 $\overline{A} \cup B = \{ 1,3,4,5,6,7,8 \}$ 

$$\overline{A} = \{1,6,7,8\}$$

b) 
$$A \cap B = \{\}$$
 or  $\emptyset$ 

6. a) 
$$A \cap C = \{1,2,3\}$$

**b)** 
$$A \cup B = \{1,2,3,4,5\}$$

d) 
$$BUC_{=}\{1,2,3,4,5,6\}$$

e) 
$$AUC = \{1,2,3,6\}$$

# Multiple Choice (Answers)

- 1. C 2. D
- 3. A
- 4. B
- 5. D
- 6. B
- 7. C
- 8. C
- 9. B
- 10.A
- 11.B
- 12. C
- 13.D
- 14.A
- 15.C
- 16.B
- 17.B
- 18.C 19.**B**
- 20.B
- 21.B
- 22.B
- 23.A
- 24.B
- 25.B 26.C
- 27.C
- 28.B
- 29. D.
- 30.A
- 31.C
- 32.B
- 33.D 34.A

**OSLNECB** 

#### 7.2 Answers (Solutions)

1.

a) 
$$7.2 \times 10^{-1} = 0.72$$
  
 $3.5 \times 10^{-2} = 0.035$   
 $0.72 + 0.035 = 0.755$   
 $0.755 = 7.55 \times 10^{-1}$ 

2.

a) Log 8 = log 2 × 2 × 2  
= log 2 + log 2 + log 2  
= 
$$3 \times 0.3010 = 0.9030$$

c) 
$$\log \frac{12}{5} = \log 12 - \log 5$$
  
=  $\log 2 \times 2 \times 3 - \log 5$   
=  $\log 2 + \log 2 + \log 3 - \log 5$   
=  $2(0.3010) + 0.4771 - 0.6990$   
=  $1.7091 - 0.6990 = 0.3801$ 

**b)** 
$$\log \frac{8}{3} = \log 8 - \log 3$$
  
=  $\log 2 + \log 2 + \log 2 - \log 3$   
=  $3(0.3010) - 0.4771$   
=  $0.9030 - 0.4771$   
=  $0.4259$ 

c) 
$$\log (3 \times 40)$$
  
=  $\log 3 \times 2 \times 2 \times 2 \times 5$   
=  $0.4771 + 0.9030 + 0.6990$   
=  $2.0791$ 

4. a) 
$$23570000 = 2.357 \times 10^7$$
  
b)  $\frac{(3x^2)(x^5)(8x)^2}{(3x^3)(4x^2)} = \frac{3x^2 \times x^5 \times 64x^2}{12x^5} = \frac{192x^9}{12x^5} = \frac{192x^9}{12x^5} = 16x^4$ 

a) 
$$\log_2 32 = \log_2 2^5 = 5 \log_2 2 = 5$$
  
b)  $\log_3 81 = \log_3 3^4 = 4 \log_3 3 = 4$ 

a) 
$$0.0057 = 5.7 \times 10^{-3}$$
  
b)  $36000.0 = 3.6 \times 10^{4}$ 

7.  
a) 
$$\log 30 = \log 2 \times 3 \times 5$$
  
 $= \log 2 + \log 3 + \log 5$   
 $= 0.3010 + 0.4771 + 0.6990$   
 $= 1.4771$ 

9. a) 
$$16 = 2^{x}$$
  $2^{4} = 2^{x}$ 

b) 
$$14x^2y^3 \div 7xy^5 = 2x^{2-1}y^{3-5}$$
  
=  $2xy^2$ 

10.28
$$x^4y^6 \div 7x^2y^7 = 4x^{4-2}y^{6-7} = 4x^2y^1 = \frac{4x^2}{y}$$
.

11.a) 
$$(7.2 \times 10^{-1}) + (3.5 \times 10^{-2})$$
  
 $7.2 \times 10^{-1} = 0.72$   
 $3.5 \times 10^{-2} = 0.035$ 

$$7.2 \times 10^{-1} + 3.5 \times 10^{-2} = 0.72 + 0.035 = 0.755$$
  
 $\therefore 7.2 \times 10^{-1} + 3.5 \times 10^{-2} = 7.55 \times 10^{-1}$ 

b) 
$$(24X10)-(1.2X10^3)$$
  
 $2.4 \times 10^5 = 240,000$   
 $1.2 \times 10^{-3} = 0.0012$   
 $2.4 \times 10^5 - 1.2 \times 10^{-3} = 240,000 - 0.0012 = 239999.9988$   
 $\therefore 2.4 \times 10^5 - 1.2 \times 10^{-3} = 2.399999988 \times 10^5$ 

**12.** a). 
$$0.005431 = 5.431 \times 10^{-3}$$
  
b)  $5.43 \times 10^{-5} = 0.0000543$ 

**13.** 
$$60320105 = 6.0320105 \times 10^7$$

14. b) 
$$3^{y} = 9^{y-1}$$
  
 $3^{y} = 3^{2(y-1)}$   
 $y = 2y - 2$   
 $y - 2y = -2$   
 $y = -2$   
 $\frac{-y}{-1} = \frac{-2}{-1}$   
 $y = 2$ 

**15.**t) i) 
$$\log_7 49 = \log_7 7^2 = 2 \log_2 7 = 2$$

ii) 
$$\log_5 625 = \log_5 5^4 = 4 \log_2 5 = 4$$

16. b) 
$$2^{x} = 8$$
  
 $2^{x} = 2^{3}$   
 $x = 3$ 

t) 
$$\log_4 (256) = \log_4 4^4 = 4 \log_4 4 = 4$$

#### 8.1 Multiple Choice (Answers)

- 1. C
- 2. B
- 3. C
- 4. B
- 5. B
- 6. B
- o. D
- **7.** B
- 8. D
- 9. B
- **10**.B
- 11.A
- **12.**D
- 13.B
- 14.C
- 15.A 16.C
- 10.0
- 17.A
- 18.C

19.B

20.A

21.C

# 8.2 Answers (Solutions)

1. Length=
$$\frac{P}{2} - b$$
  
=  $\frac{30m}{2} - 7m = 15m - 7m$   
=  $8m$ 

2.

a) 
$$r = \frac{d}{2} = \frac{14 \, m}{2} = 7m$$

b) 
$$C = 2\pi r = 2 \times \frac{22}{7} \times 7m = 44 \text{ m}$$

a) 
$$A = \frac{1}{2}(a+b)h = \frac{1}{2}(20 \text{ cm} + 24 \text{ cm}) \times 12 \text{ cm} = 34 \text{ cm} \times 6 \text{cm} = 204 \text{ cm}^2$$

c) 
$$P = 2(l+b) = 2(12 cm + 5000 cm) = 2 \times 5012 cm = 10024 cm$$

4. Area of rectangle =  $L \times b = 8 \text{ cm} \times 6 \text{ cm} = 48 \text{ cm}^2$ 

Area of circle = 
$$\pi r^2 = \frac{22}{7} \times 3.5 \text{ cm} \times 3.5 \text{ cm} = 38.5 \text{ cm}^2$$

Shaded area =  $48 \text{cm}^2 - 38.5 \text{cm}^2 = 9.5 \text{ cm}^2$ 

5. 1 rotation = Circumference

$$= 2\pi r = 2 \times \frac{22}{7} \times 3.5 cm$$

 $20 \text{ times} = 22 \text{ cm} \times 20 = 440 \text{ cm}$ 

The distance is 440 cm or 4.4 m.

6. 
$$A = \frac{1}{2}(4.5 m + 5.5 m) \times 4m$$
  
= 10 m × 2 m  
= 20 m<sup>2</sup>

7. Shaded area = Area of the outer rectangle - Area of inner rectangle.

 $= 156 \text{ cm}^2$ 8. Circumference of half circle =  $\frac{1}{2}\pi dh = \frac{1}{2} \times \frac{22}{7} \times 14 \text{ sm} = 22 \text{ cm}$ Perimeter of the rectangle = 2(dh + b) = 2(14 + 24) = 62 cm

perimeter of all the shape = 62 + 22 = 84 cm

#### 9.1 Multiple Choice (Answers)

- 1. B
- 2. A
- 3. B
- 4. D
- 5. A
- 6. B
- 7. C
- 8. C
- 9. A
- 10.A
- 11.B
- 12.C
- 13.A 14.D
- 15.C.
- 16. A

#### 9.2 Answers (Solutions)

1.

a) 
$$v = \pi r^2 h$$

$$= 3.14 \times (9 \text{ cm})^2 \times 12 \text{ cm}$$

$$=3052.08$$
 cm<sup>3</sup>

t) S.A = 
$$2\pi r(r+h)$$

$$= 2 \times 3.14 \times 9cm(9cm +$$

$$= 56.52 \times 21 \text{ cm}^3$$

$$= 1186.92 \text{ cm}^3$$

2.

a) 
$$v = \pi r^2 h$$

$$= \frac{22}{7} \times (3.5 \, m)^2 \times 12 \, m$$
$$= 462 \, m^3$$

**b)** Volume of water = 
$$\frac{462m^3}{2}$$
 =

 $231m^{3}$ 

3. 
$$v = \pi r^2 h$$

$$= 3.14 \times (3 \text{ cm})^2 \times 4 \text{ cm}$$

$$= 113.14 cm^3$$

4. 
$$v = \pi r^2 h$$

$$=\frac{22}{7}\times(4\ cm)^2\times21\ cm$$

$$= 1056 cm^3$$

 $j = \frac{M}{\pi r^2}$ 

j= 4 m

 $j = 616 \text{ m}^3 \div \frac{22}{7} \times 7^2$ 

 $j = 616 \text{ m}^3 \div 22 \text{ X } 7$ 

 $j = 616 \text{ m}^3 \div 154 \text{ m}^2$ 

ama

Someliand National Examination Somanianu National E and Certificate Board

5. 
$$v = \pi r^2 h$$
  
1056 cm<sup>3</sup> =  $\frac{22}{7} \times r^2 \times 21$  cm

$$\frac{1056}{66} = \frac{66}{66}r^{2}$$

$$\frac{1056}{66} = r^{2}$$

$$16 = r^{2}$$

$$r = 4cm$$

6. 
$$v = \pi r^2 h$$
  
 $616 \text{ m}^3 = \frac{2^2}{7} \times 7^2 \times j \text{ m}$ 

$$616 \text{ m}^3 = \frac{7}{7}$$

$$616 \text{ m}^3 = 22 X 7 \times \text{j}$$

$$616 \text{ m}^3 = 154 \times \text{j}$$

$$616 \text{ m}^3 = 154 \times \text{j}$$

$$\frac{616 \text{ m}^3 - 15}{\frac{616}{154}} = \frac{154}{154} \text{ X j}$$

$$4 = j$$

$$j = 4 m$$

# 10.1 Multiple Choice (Answers)

### 10.2 Answers (Solutions)

1.

a) Speed = 
$$\frac{d}{t} = \frac{174 \text{ km}}{3 \text{ hr}} = 58 \text{ Km/hr}$$

b) Average speed

$$= \frac{Distance}{Total Time} = \frac{174 \text{ km} - 30 \text{ km}}{2 \text{ hr}} = \frac{144 \text{ km}}{2 \text{ hr}} = 72 \text{ km/hr}$$

$$\text{C) Time} = \frac{Distance}{Average \text{ speed}} = \frac{174 \text{ km}}{29 \text{ km/hr}} = 6 \text{ hr}$$

c) 
$$Time = \frac{Distance}{Average speed} = \frac{174 \text{ km}}{29 \text{ km/hr}} = 6 \text{ hr}$$

|   | Distance | Time          | Speed    |
|---|----------|---------------|----------|
| A | 20 km    | 2 hours       | 10 km/hr |
| В | 135 km   | 90<br>minutes | 90 km/hr |
| C | 45 km    | 1.5 hour      | 30 km/hr |

3. 
$$v = 96 \text{ km/h}$$

$$t = \frac{15 \, daq iiqo}{60} = \frac{1}{4}h$$

$$D = V \cdot t = \frac{96km}{h} \times \frac{1}{4}h = \frac{96km}{4} = 24km$$

4.

| Distance (m) | Time (sec) | Speed (m/s) |
|--------------|------------|-------------|
| 80 m         | 2 seconds  | 40 m/s      |
| 180 m        | 3 seconds  | 60 m/s      |
| 20 m         | 4 seconds  | 5 m/s       |

5. 
$$Speed = \frac{d}{t} = \frac{174 \text{ km}}{3 \text{ hr}} = 58 \text{ Km/hr}$$

### 11.1 Multiple Choice(Answers)

- 1. C
- 2. D
- 3. C
- 4. B

### 11.2 Answers (Solutions)

- 1. Discount = 15% ka  $8400 = \frac{15}{100} \times \$8400 = \$1260$ Selling Price= Normal price - discount = \$8400 - \$1260= \$7140
- 2.
- a) 15 × \$20 = \$300
- **b)** 15 × \$23 = \$345
- c) \$345 \$300 = \$45

### 12.1 Multiple Choice (Answers)

- 1. C
- 2. A
- 3. B
- 4. B
- 5. D
- 6. B
- 7. B
- 8. A
- 9. B
- 10.B
- 11.A
- 12.B
- 13.A
- 14.D

```
15.C
```

### 12.2 Answers (Solutions)

1.

a) 
$$y^0 = 45^0$$
 (Corresponding angles)

$$x^0 = 180^0 - 45^0$$

$$x^0 = 135^0$$

b) 
$$m^0 = 40^0 + 55^0 - 180^0$$
  
 $m^0 = 85^0$ 

2.  $x = 60^{\circ}$  (vertically opposite angles)

$$z = 180^{\circ} - y = 180^{\circ} - 60^{\circ} = 120^{\circ}$$

3. 
$$x^2 = (30 \text{ cm})^2 + (40 \text{ cm})^2$$

$$x^2 = 900 \text{ cm}^2 + 1600 \text{ cm}^2$$

$$x^2 = 2500 \text{ cm}^2$$

$$x = 50 \text{ cm}$$

- a) /= 120° (Vertically opposite angles)
- b)  $y' = 120^{\circ}$  (alternating angles)
- c)  $r = 180^{\circ} 120^{\circ} = 60^{\circ}$

### Somaliland National Examination and Certificate Board

#### Certificate of Primary Education Grade Eight Maths Examinations

5. a) 
$$AC^2 = AB^2 + BC^2$$
  
=  $(16 \text{ cm})^2 + (12 \text{ cm})^2$   
=  $256 \text{ cm}^2 + 144 \text{ cm}^2$   
=  $400 \text{ cm}^2$ 

$$AC = 20 \text{ cm}$$

b) It has two lines of symmetry.



c) Area of ACD = 
$$\frac{1}{2} \times s \times j$$
  
=  $\frac{1}{2} \times 16sm \times 12sm = 96cm^2$ 

**6.** 
$$r = 72^{\circ}$$
 (alternating angles)  $s = 180^{\circ} - 125^{\circ} = 55^{\circ}$ 

7. Exterior angle = 
$$\frac{360^{\circ}}{n} = \frac{360^{\circ}}{6} = 60^{\circ}$$

$$x_1 + x_2 + 40^\circ = 180^\circ$$
 (The sum of the angles on a triangle is  $180^\circ$ )  
 $x_1 + x_2 = 180^\circ - 40^\circ$   
 $x_1 + x_2 = 140^\circ$   
 $< DCA + 40^\circ = 180^\circ$  (angles on a straight line)  
 $< DCA = 180^\circ - 40^\circ$   
 $< DCA = 140^\circ$   
 $\therefore < DCA = x_1 + x_2$ 

9. 
$$\_X + X + 80^{\circ} = 180^{\circ}$$
  
 $2x + 80^{\circ} = 180^{\circ}$   
 $2x = 180^{\circ} - 80^{\circ}$   
 $\frac{2x}{2} = \frac{100}{2}$   
 $X = 50^{\circ}$   
 $< ABC - 50^{\circ} = 180^{\circ}$   
 $< ABC = 180^{\circ} - 50^{\circ}$   
 $\therefore < ABC = 130^{\circ}$ 

# Somaliland National Examination Sortificate Board

Certificate of Primary Education
Grade Eight Maths Examinations

11. 
$$y = 120^{\circ}$$
 (Vertically opposite angles)  
 $x + 120^{\circ} = 180^{\circ}$   
 $x = 180^{\circ} - 120^{\circ}$   
 $x = 60^{\circ}$   
 $x = 60^{\circ}$   
 $x = 60^{\circ}$   
 $x = 120^{\circ}$  (alternating angles)  
 $x = 120^{\circ}$   
 $x = 120^{\circ}$   
 $x = 120^{\circ}$   
12.  $x + 2x + 2x + 2x + 2x + 10 = 720^{\circ}$   
 $x = 720^{\circ} - 10$   
 $x = 710^{\circ}$ 

#### 13.1 Multiple Choice (Answers)

 $X = 78.88^{\circ}$ 

- 1. C
- 2. B
- 3. C
- 4. D
- 5. C
- 6. D
- 7. A
- 8. D
- 9. A
- 10.B.
- 11.B.
- 12.C
- 13. A

### 13.2 Answers (Solutions)

1. 
$$60, 75, 80, 75, 90, 50$$
  
a) Mean =  $\frac{60+80+75+75+90+50}{6}$  =  $\frac{430}{6}$  = 71.67  
The mode is 75.

2. 3, 4, 5, 5, 5, 6, 7, 8, 8, 9, 9, 10  
a) 
$$Median = \frac{6+7}{2} = \frac{13}{2} = 6.5$$

**b)** 
$$Mean = \frac{3+4+5+5+5+6+7+8+8+9+9+10}{12} = \frac{79}{12} = 6.58$$

3.

Mean of the three girls =  $3 \times 9 = 27$  Years Two of them = 11 + 7 = 18 Years the third girl = 27 - 18 = 9 Years

### 14.1 Multiple Choice (Answers)

- 1. C
- 2. C
- 3. D
- 4. D
- 5. A
- 6. D

#### 14.2 Answers (Solutions)

- 1. A(2, 3)
  - B(1, -4)
  - C(0, 4)
  - D(-4-3)

2.



- b) Team A
- c) 1 Point
- **d)** Mean =  $\frac{15+12+10+14+9}{5} = \frac{60}{5} = 12$

**a)** Area of Banana = 
$$\frac{120^{\circ}}{360^{\circ}} \times 24 \ hi = \frac{2880}{360} = 8 \ hi$$

**b)** Area of rice = 
$$\frac{100^{\circ}}{360^{\circ}} \times 24 \ hi = \frac{2400 \ hi}{360} = 6.67 \ hi$$

### Somaliland National Examination and Certificate Board

#### Certificate of Primary Education **Grade Eight Maths Examinations**

4. a) Rice = 
$$\frac{80^{\circ}}{360^{\circ}} \times 24 \ hi = \frac{1920 \ hi}{360} = 5.33 \ hi$$
  
b) uncultivated land =  $\frac{90^{\circ}}{360^{\circ}} \times 24 \ hi = \frac{2160 \ hi}{360} = 6 \ hi$ 

# 15.1 Multiple Choice (Answers)

- 1. C
- 2. A
- 3. C

### 15.2 Answers (Solutions)

a) 
$$P(red) = \frac{4}{12} = \frac{1}{3}$$

b) P(not red) = 
$$\frac{8}{12} = \frac{2}{3}$$

c) P(Red or Black) = 
$$\frac{4}{12} + \frac{5}{12} = \frac{9}{12} = \frac{3}{4}$$

#### 16.1 Multiple Choice (Answers)

- 1. D
- 2. B
- 3. B
- 4. B
- 5. A
- 6. B
- 7. C
- 8. D
- 9. C
- 10.A
- 11.A
- 12.A
- 13.B
- 14.A 15.C
- 16.A
- 17.C
- 18.A
- 19.D
- 20.A
- 21.B
- 22.D

### Somaliland National Examination and Certificate Board

Certificate of Primary Education Grade Eight Maths Examinations

23.B

24.A

25.A

26.B

27.B

28.C

29.A.

30.C

31.B

32.A

33.A

34.B.

35.D

36.B

37.C

38.B. 39.A.

40.A,

#### 16.2 Answers (Solutions)

1.

a) 
$$\frac{16x^2 + 8x}{4x} = \frac{16x^2}{4x} + \frac{8x}{4x} = 4x + 2$$

**b)** 
$$(2y-3)(y+2) = 2y^2 + 4y - 3y - 6 = 2y^2 + y - 6$$

2.

$$\begin{array}{c|c}
3 & x + y = 2 \\
-1 & 3x + 2y = 5 \\
\hline
3x + 3y = 6 \\
-3x - 2y = -5 \\
y = 1
\end{array}$$

$$x + y = 2$$

$$x + 1 = 2$$

$$x = 2 - 1$$

$$x = 1$$

Solution set =  $\{1, 1\}$ 

3. 
$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-1 - 3}{-4 - (-2)} = \frac{-4}{-2} = 2$$

Equation of straight line that passes through (-2, 3):

$$y = mx + c$$

$$3 = 2(-2) + c$$

$$3 + 4 = c$$

$$7 = c$$

Equation of straight line is: y = 2x + 7

Certificate of Primary Education Grade Eight Maths Examinations

Solutional Examination

Solutional Examination

Solutional Examination

Solutional Examination

Solutional Examination  $2y^2 - 5y - 3 = 0$   $2y^2 - 5y + y - 3 = 0$   $2y^2 - 6y + y - 3 = 0$  2y(y - 3) + 1(y - 3) = 0 2y(y - 3) = 0 2y + 1 = 0 2y + 1 = 0 2y + 1 = 0 3y - 3 = 0

5. a) 
$$3x + 2 - 7x - 4 + 5x + 6$$
  
 $3x - 7x + 5x + 2 - 4 + 6 =$   
 $x + 4$   
 $(7x - 6y)$ 

b) 
$$(14x + 5y) - (7x - 6y)$$
  
=  $14x + 5y - 7x + 6y$   
=  $7x + 11y$ 

$$\begin{array}{c} = 7x + 11y \\ c) -9x(x - 3) = -9x^2 + 27 \\ 6. \ x^2 - 5x - 24 = 0 \end{array}$$

6. 
$$x^2 - 5x - 24 = 0$$
  
 $x^2 - 8x + 3x - 24 = 0$ 

$$x(x-8) + 3(x-8) = 0$$

$$(x+3)(x-8) = 0$$

$$x+3=0 \qquad x-8=0$$
$$x=-3 \qquad x=8$$

Solution set = 
$$(-3,8)$$



8.

9.  
a) 
$$\frac{4x}{3} = 12$$
  
 $4x = 36$   
 $x = 9$   
b)  $\frac{x-2}{3} = \frac{x+3}{4}$   
 $4(x-2) = 3(x+3)$   
 $4x - 8 = 3x + 9$   
 $4x - 3x = 9 + 8$   
 $x = 17$   
10.  $m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-4 - 2}{-1 - 1} = \frac{-6}{-2} = 3$   
11. Age of Zainab =  $x$   
Age of Ismail =  $x + 12$   
 $x + 12 + 6 = 2(x + 6)$   
 $x + 18 = 2x + 12$   
 $x = 6$   
Zainab's age =  $6$   
Ismail's Age =  $x + 12 = 6 + 12 = 18$   
12.  $8c + 5d - c - 3d = 8c - c + 5d - 3d = 7c + 2d$   
13.  $4(2x - 7) = 12$   
 $8x - 28 = 12$   
 $8x = 12 + 28$   
 $8x = 40$   
 $x = 5$ 

Certificate of Primary Education Grade Eight Maths Examinations

Somaliland National Examination and Certificate Board

$$\begin{array}{l}
\text{and cert} \\
\text{and cert} \\
\text{14.5} a = 10 \text{ so } a = 2 \\
5a + 5b = 15 \\
5(2) + 5b = 15 \\
10 + 5b = 15 \\
5b = 15 - 10 \\
5b = 5
\end{array}$$

$$b = 1$$

$$15.x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

5. 
$$x = \frac{-2a}{x}$$

$$x = \frac{-(-7) \pm \sqrt{(-7)^2 - 4(6)(2)}}{2(6)}$$

$$x = \frac{7 \pm \sqrt{49 - 48}}{12}$$

$$x = \frac{7 \pm \sqrt{1}}{12}$$

$$x = \frac{7 \pm 1}{12}$$

$$x_1 = \frac{7+1}{12} = \frac{8}{12} = \frac{2}{3}$$

$$x_2 = \frac{7-1}{12} = \frac{6}{12} = \frac{1}{2}$$

$$x_1 = \frac{12}{12} = \frac{1}{12} = \frac{3}{3}$$
$$x_2 = \frac{7-1}{12} = \frac{6}{12} = \frac{1}{2}$$

Solution set = 
$$\left\{\frac{1}{2}, \frac{2}{3}\right\}$$

$$\begin{array}{c|c}
1 & 3x + 2y = 7 \\
 \hline
 & x + 3y = 7
\end{array}$$

$$\frac{(+3y=7)}{3x+2y=7}$$

$$\frac{-3x - 9y = -21}{-7y = -14}$$

$$3x + 2y = 7$$

$$3x + 2(2) = 7$$

$$3x = 7 - 4$$

$$3x = 3$$

$$X=1$$

17, 
$$x^2 - 7x + 6 = 0$$
  
 $x^2 - 6x - x + 6 = 0$   
 $x(x - 6) - 1(x - 6) = 0$   
 $(x - 1)(x - 6) = 0$   
 $x - 1 = 0$   
 $x = 1$   
 $x = 6$   
Solution set = (1,6)

### Somaliland National Examination and Certificate Board

### Certificate of Primary Education Grade Eight Maths Examinations

18.

a) 
$$6x^2 + 7x + 1$$
  
 $= 6x^2 + 6x + x + 1$   
 $= 6x(x + 1) + 1(x + 1)$   
 $= (6x + 1)(x + 1)$   
b)  $2x^2 + 2x - 12 = 0$   
 $2x^2 - 4x + 6x - 12 = 0$   
 $2x(x - 2) + 6(x - 2) = 0$   
 $(2x + 6)(x - 2) = 0$   
 $2x + 6 = 0$   $x - 2 = 0$   
 $x = -3$   $x = 2$   
Solution set =  $(-3, 2)$ 

19.

$$x + y = 24$$

$$x - y = 10$$

$$2x = 34$$

$$x = 17$$

$$x + y = 24$$

$$17 + y = 24$$

$$y = 24 - 17$$

$$y = 7$$

The two numbers are 17 and 7.

20. 
$$x^{2} + x - 6 = 0$$
  
 $x^{2} - 2x + 3x - 6 = 0$   
 $x(x - 2) + 3(x - 2) = 0$   
 $(x + 3)(x - 2) = 0$   
 $x + 3 = 0$   $x - 2 = 0$   
 $x = -3$   $x = 2$   
Solution set =  $(-3, 2)$ 

$$21.4x^2y + 12xy^2 = y = 4xy(x+3y)$$

**22.** Let the first number be x Let the other number be y.

$$x \cdot y = 72$$

$$x + y = 17$$

$$x = 17 - y$$

$$(17 - y)y = 72$$

$$-y^{2} + 17y - 72 = 0$$

$$y^{2} - 17y + 72 = 0$$

$$y^{2} - 8y - 9y + 72 = 0$$

$$y(y - 8) - 9(y - 8) = 0$$

$$(y - 8)(y - 9) = 0$$

$$y = 8, y = 9$$

$$x = 17 - y = 17 - 8 = 9$$

Sonaliand National Examination and Certificate Board

Certificate of Primary Education Grade Eight Maths Examinations

$$y = 17 - y = 17 - 9 = 8$$
The two numbers are 8 and 9

23. b) 
$$m = \frac{y_2 - y_1}{x_2 - x_1} =$$

$$7 = \frac{y_2 - 1}{4 - 3}$$

$$7 = y_2 - 1$$

$$y_2 = 7 + 1$$

$$y_2 = 8$$
t)  $36 \times 5 - 9 \times 3 = 9 \times 2 (4 \times 3 - 1)$ 

24. 
$$\chi^{2} + 2 \times -15 = 0$$

$$\chi^{2} + 5x - 3x - 15 = 0$$

$$\chi (x + 5) - 3 (x + 5) = 0$$

$$(x-3)(x+5) = 0$$
  
 $(x-3) = 0$  or  $(x+5) = 0$ 

$$x=3$$
 or  $x=-5$ 

Solution set = 
$$(3, -5)$$
  
25.

$$x + x + 35 = 55$$

$$2x + 35 = 55$$
  
 $2x = 55 - 35$ 

$$2x = 20$$

$$\frac{2x}{2} = \frac{20}{2}$$

Father = x + 35 = 10 + 35 = 45 years

$$26. \text{ m} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{4 - 2}{-2 - 3} = -\frac{2}{5}$$

$$Y = \text{mx+c} \quad 2 = -\frac{2}{5}(3) + c$$

Y= mx+c 
$$2 = -\frac{2}{5}(3) + c$$

$$C = \frac{16}{5}$$

$$y = -\frac{2}{5}X + \frac{16}{5}$$

27. Graph of these equation below

$$2x - 3y = -5$$

$$3x + 2y = 12$$

### 17.2 Answers (Solutions)

$$\tan 60^{0} = \frac{o}{A}$$

$$\tan 60^{0} = \frac{5}{X}$$

$$(\tan 60^{0})(x) = 5$$

$$\frac{(1.7321)(X)}{1.7321} = \frac{5 \text{ m}}{1.7321}$$

$$X = \frac{5 \text{ m}}{1.7321}$$

$$X = 2.887 \text{ m}$$
2. 
$$\tan 30^{0} = \frac{Opposite}{Adjacent}$$

$$\tan 30^{0} = \frac{X}{6 \text{ m}}$$

$$(\tan 30^{0})(6m) = X$$

$$(0.5774)(6m) = X$$

$$X = 3.4644 \text{ m}$$



The END

23/2

or My

tan-

super -

## Mathematics Workbookwith Key



### Mathematics Workbook with Keys

This book contains Mathematics questions with their keys.

The types of questions in this book fall under the following categories:

- 1. Multiple Choice Questions
- 2. Structured Questions
- 3. Extended Questions

This book will help primary students to familiarize themselves with the form at of Somaliland national examinations are performed and to test themselves the level of their knowledge of Mathematics.

NOTICE: First, the students should answer the questions without consulting the keys to the questions. The keys are only intended for reference and checking when the work isdone.

